Applied Microbiology and Biotechnology

, Volume 41, Issue 3, pp 313–316

Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii

  • U. Pflugmacher
  • G. Gottschalk
Original Papers

Abstract

Citrobacter freundii DSM 30040 immobilized on modified polyurethane carrier particles PUR 90/16 was used for continuous glycerol fermentation in an anaerobic fixed bed reactor with effluent recycle and pH control (fixed bed loop reactor). The fermentor was run with buffered mineral medium under growth conditions resulting in the permanent renewal of active biomass. The effects of glycerol concentration in the feed, dilution rate (D), pH and temperature (T) were investigated to optimize the process. With 400 mm glycerol in the feed, pH 6.9, T = 36°C and D = 0.5 h−1 the maximum productivity could be determined as 8.2 g/l per hour of 1,3-propanediol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701–705Google Scholar
  2. Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597Google Scholar
  3. Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457Google Scholar
  4. Da Fonseca MM, Black GM, Webb C (1986) Reactor configurations for immobilised cells. In: Webb C, Black GM (eds) Process engineering aspects of immobilised cell systems: papers of a conference. The Institution of Chemical Engineers, North Western Branch, Rugby, Warwicks, pp 63–73Google Scholar
  5. Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239Google Scholar
  6. Eggstein M, Kuhlmann E (1974) Triglycerides and glycerol determination after alkaline hydrolysis. In: Bergmeyer HU (ed) Methoden der enzymatischen Analysen, 3rd edn. Verlag Chemie, Weinheim, pp 1871–1878Google Scholar
  7. Elm R, Falbe J, Hahn HD, Gelbke HP (1980) Propandiole. In: Bartholomé E, Biekert E, Hellmann H, Ley H, Weigert M, Weise E (eds) Ullmanns Enzyklopädie der technischen Chemie, Vol 19. Verlag Chemie, Weinheim, pp 425–432Google Scholar
  8. Forsberg C (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643Google Scholar
  9. Griffith MS, Bosley JA (1993) Assessment of macroporous polystyrene-based polymers for the immobilization of Citrobacter freundii. Enzyme Microb Technol 15:109–113Google Scholar
  10. Günzel B, Yonsel S, Deckwer WD (1991) Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl Microbiol Biotechnol 36:289–294Google Scholar
  11. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126Google Scholar
  12. Loidl M, Hinteregger C, Stockinger J, Streichsbier F (1992) Bakterielle Detoxifikation von phenoxyalkanoat-belasteten Abwässern im PU-Airlift-Reaktor. Forum Städte-Hyg 43:204–209Google Scholar
  13. Pascik I (1990) Modified polyurethane carriers for biochemical waste water treatment. Water Sci Technol 22:33–42Google Scholar
  14. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256Google Scholar
  15. Schütz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1,3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5:169–178Google Scholar
  16. Streekstra H, Teixeira De Mattos MJ, Neijssel OM, Tempest OW (1987) Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147:268–275Google Scholar
  17. Webb C (1986) Biomass hold-up in immobilised cell reactors. In: Webb C, Black GM (eds) Process engineering aspects of immobilised cell systems: papers of a conference. The Institution of Chemical Engineers, North Western Branch, Rugby, Warwicks, pp 117–132Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • U. Pflugmacher
    • 1
  • G. Gottschalk
    • 1
  1. 1.Institut für Mikrobiologie der Georg-August-UniversitätGöttingenGermany

Personalised recommendations