Advertisement

Cell and Tissue Research

, Volume 177, Issue 1, pp 9–28 | Cite as

The superposition eye of Cloeon dipterum: The organization of the lamina ganglionaris

  • K. Wolburg-Buchholz
Article

Summary

The lamina ganglionaris of the superposition eye of Cloeon dipterum is composed of separate optic cartridges arranged in a hexagonal pattern. Each optic cartridge consists of one central, radially branched monopolar cell (Li) surrounded by a crown of seven retinula cell terminals and two more unilaterally branched monopolar cells (La1/La2) situated close together outside the cartridge. Projections to neighbouring cartridges have not been observed.

In most cases, synaptic contacts could be seen between a presynaptic retinula cell and more than two other postsynaptic profiles, which belong to monopolar cells or sometimes to glial cells.

Seven retinula cell fibers of one ommatidium pass in a bundle through the basement membrane, run into their respective cartridges without changing orientation and terminate at approximately equal levels in the lamina. Long visual fibers with endings in the medulla are not visible in the superposition eye lamina, but are present in the lateral apposition eye. The relationship between the behaviour of the animal, optic mechanisms of the superposition eye and the structure of the lamina is discussed.

Key words

Superposition eye Lamina ganglionaris Cloeon dipterum Light- and electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. 118, 369–409 (1971)Google Scholar
  2. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967)Google Scholar
  3. Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970)Google Scholar
  4. Braitenberg, V., Debbage, P.: A regular net of reciprocal synapses in the visual system of the fly, Musca domestica. J. comp. Physiol. 90, 25–31 (1974)Google Scholar
  5. Braitenberg, V., Hauser-Holschuh, H.: Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurons in relations to models of movement perception. Exp. Brain Res. 16, 184–209 (1972)Google Scholar
  6. Burkhardt, W., Braitenberg, V.: Some peculiar synaptic complexes in the first visual ganglion of the fly, Musca domestica. Cell Tiss. Res. 173, 287–308 (1976)Google Scholar
  7. Cajal, S.R. y D. Sanchez: Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. Trab. Lab. Invest. Biol. Univ. Madrid 13, 1–168 (1915)Google Scholar
  8. Campos-Ortega, J.A., Strausfeld, N.J.: The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z. Zellforsch. 124, 561–585 (1972)Google Scholar
  9. Campos-Ortega, J.A., Strausfeld, N.J.: Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. Brain Res. 59, 119–136 (1973)Google Scholar
  10. Colonnier, M.: The tangential organization of the visual cortex. J. Anat. (Lond.) 98, 327–344 (1964)Google Scholar
  11. Exner, S.: Die Physiologie der facettierten Augen von Krebsen und Insekten. Leipzig und Wien: Franz Deuticke 1891Google Scholar
  12. Hafner, G.S.: The ultrastructure of retinula cell endings in the compound eye of the crayfish. J. Neurocyt. 3, 295–311 (1974)Google Scholar
  13. Hanström, B.: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Berlin: Springer 1928Google Scholar
  14. Hauser-Holschuh, H.: Vergleichend quantitative Untersuchungen an den Sehganglien der Fliegen Musca domestica und Drosophila melanogaster. Doctor-Dissertation. Eberhard-Karls-Universität, Tübingen. Augsburg: Blasaditsch 1975Google Scholar
  15. Horridge, G.A.: The ommatidium of the dorsal eye of Cloeon as a specialization for photoreisomerization. Proc. roy. Soc. B 193, 17–29 (1976)Google Scholar
  16. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967)Google Scholar
  17. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968)Google Scholar
  18. Kunze, P.: Comparative studies of arthropod superposition eyes. Z. vergl. Physiol. 76, 347–357 (1972)Google Scholar
  19. Lamparter, H.E., Steiger, U., Sandri, C., Akert, K.: Zum Feinbau der Synapsen im Zentralnervensystem der Insekten. Z. Zellforsch. 99, 435–442 (1969)Google Scholar
  20. Meinertzhagen, I.A.: The first and second neural projection of the insect eye. Ph. D. Thesis: University of St. Andrews (Scotland) 1971Google Scholar
  21. Menzel, R., Snyder, A.W.: Polarized light detection in the bee, Apis mellifera. J. comp. Physiol. 88, 247–270 (1974)Google Scholar
  22. Ohly, K.P.: The neurons of the first synaptic region of the optic neuropile of the firefly, Phausis splendidula L. (Coleoptera). Cell Tiss. Res. 158, 89–109 (1975)Google Scholar
  23. Priesner, H.: Zur Entwicklungsgeschichte der Turbanaugen von Cloeon dipterum L. Zool. Jb. Abt. Anat. 39, 485–514 (1916)Google Scholar
  24. Ramón-Moliner, E.: The Golgi-Cox technique. In: Contemporary methods in neuroanatomy (eds. W.J.H. Nauta, S.O.E. Ebbesson), pp. 32–55. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  25. Ribi, W.A.: Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tiss. Res. 148, 277–286 (1974)Google Scholar
  26. Ribi, W.A.: The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tiss. Res. 165, 103–111 (1975)Google Scholar
  27. Strausfeld, N.J.: Atlas of an insect brain. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  28. Strausfeld, N.J., Blest, A.D.: Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. B 258, 81–134 (1970)Google Scholar
  29. Strausfeld, N.J., Braitenberg, V.: The compound eye of the fly (Musca domestica): Connections between cartridges of the lamina ganglionaris. Z. vergl. Physiol. 70, 95–104 (1970)Google Scholar
  30. Strausfeld, N.J., Campos-Ortega, J. A.: The L4 monopolar neuron: A substrate for lateral interaction in the visual system of the fly Musca domestica (L). Brain Res. 59, 97–117 (1973)Google Scholar
  31. Streble, H.: Die Augen der Eintagsfliege Cloeon dipterum. Microkosmos 49, 237–244 (1960)Google Scholar
  32. Trujillo-Cenóz, O.: Some aspects of the structural organization of the intermediate retina of Dipterans. J. Ultrastruct. Res. 13, 1–33 (1965a)Google Scholar
  33. Trujillo-Cenóz, O., Melamed, J.: On the fine structure of the photoreceptor —second order synapse in the insect retina. Z. Zellforsch. 59, 71–77 (1963).Google Scholar
  34. Viallanes, H.: Sur la structure de la lame ganglionnaire des crustacés décapodes. Bul. Soc. Zool. France, t. XVI (1891)Google Scholar
  35. Weiss, M.J.: A reduced silver staining method applicable to dense neuropiles, neuroendocrine organs, and other structures of insects. Brain Res. 39, 268–273 (1972a)Google Scholar
  36. Wolburg-Buchholz, K.: The dorsal eye of Cloeon dipterum (Ephemeroptera) (A light- and electronmicroscopical study). Z. Naturforsch. 31c, 335–336 (1976)Google Scholar
  37. Zimmer, G.: Die Facettenaugen der Ephemeriden. Z. wiss. Zool. 63, 236–262 (1897)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • K. Wolburg-Buchholz
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations