Advertisement

Cell and Tissue Research

, Volume 154, Issue 1, pp 109–119 | Cite as

A quantitative identification of three muscle fiber types in the body muscles of Lampetra fluviatilis, and their relation to blood capillaries

  • Haakon R. Lie
Article

Summary

The body muscles of river lamprey, Lampetra fluviatilis, are built up of compartments consisting of one layer of tubular parietal (red) fibers surrounding one layer of platelike (white) “next to parietal” fibers, and the medial 1–3 layers of platelike central fibers. By morphometrical analysis of ultrathin sections, the content of mitochondria was 15% and 6% of the volume of parietal and central fibers, respectively, while the content of lipid in the same fibers was 10% and 0.7%. The volume of myofibrils was 69% of the parietal fiber volume and 80% of the central fiber volume. The sarcotubular system showed the values 6% and 13%, respectively. The “next to parietal” fiber layer showed statistically distinct intermediate values for all parameters. —The distribution of mitochondria was verified by a histochemical test for succinate dehydrogenase. The parietal fibers had the highest concentration of mitochondria laterally, decreasing to the middle of the fiber. The gradient was smaller in the “next to parietal” fibers, and less pronounced in the central fibers. In transverse sections of India ink injected muscle tissue, the fiber sizes were measured and capillaries counted in order to express the relation between the number of capillaries and the surface area of muscle fibers. —It is concluded that three morphological kinds of muscle fibers are present, which are probably dissimilar with respect to metabolism and function.

Key words

Muscle fiber types Lampetra fluviatilis Succinate dehydrogenase Capillaries Morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P., Jansen, J.K.S., Løyning, Y.: Slow and fast muscle fibers in the Atlantic hagfish (Myxine glutinosa). Acta physiol. scand. 57, 167–179 (1963)Google Scholar
  2. Best, A.C.G., Bone, Q.: The terminal neuromuscular junctions of lower chordates. Z. Zellforsch. 143, 495–504 (1973)Google Scholar
  3. Bone, O.: Patterns of muscular innervation in the lower chordates. Int. Rev. Neurobiol. 6, 99–147 (1964)Google Scholar
  4. Bone, Q.: On the function of the two types of myotomal muscle fibre in elasmobranch fish. J. mar. biol. Ass. U. K. 46, 321–349 (1966)Google Scholar
  5. Bone, Q.: Muscle innervation and fish classification. Acta salamant. Ciencias 36, 369–377 (1971)Google Scholar
  6. Burke, R. E., Levine, D. N., Zajac, F. E., Engel, W. K.: Mammalian motor units: Physiological-histochemical correlation in three types in cat gastrocnemius. Science 174, 709–712 (1971)Google Scholar
  7. Farrel, P. R., Fedde, M. R.: Uniformity of structural characteristics throughout the length of skeletal fibers. Anat. Rec. 164, 219–230 (1969)Google Scholar
  8. Flood, P. R.: Structure of the segmental trunk muscle in Amphioxus. Z. Zellforsch. 84, 389–416 (1968)Google Scholar
  9. Flood, P. R.: The three-dimensional structure and frequency of myosatellite cells in trunk muscle of the axolotl (Siredon mexicanus). J. Ultrastruct. Res. 36, 522–524 (1971)Google Scholar
  10. Flood, P. R., Storm Mathisen, J.: A third type of muscle fibre in the parietal muscle of the Atlantic hagfish, Myxine glutinosa. Z. Zellforsch. 58, 638–640 (1962)Google Scholar
  11. Grenacher, H.: Beiträge zur Kenntnis der Muskulatur der Cyclostomen und Leptocardier. Z. wiss. Zool. 17, 577 (1867)Google Scholar
  12. Guth, L.: Trophic influence of nerve on muscle. Phys. Rev. 48, 645 (1968)Google Scholar
  13. Hudson, R.C.L.: On the function of the white muscles in teleosts at intermediate swimming speeds. J. exp. Biol. 58, 509 (1973)Google Scholar
  14. Jasper, D.: Body muscles of the lamprey. Some structural features of the T-system and sarcolemma. J. Cell Biol. 32 (1), 219–226 (1967)Google Scholar
  15. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137A-138A (1965)Google Scholar
  16. Lillie, R. D.: Histopathologic and practical histochemistry. New York: McGraw Hill 1965Google Scholar
  17. Mackay, B., Peters, A.: Terminal innervation of segmental muscle fibres. Histochemistry of Cholinesterase, Symposium Basel. Bibl. anat. (Basel) 2, 182–193 (1961)Google Scholar
  18. Maurer, F.: Die Elemente der Rumpfmuskulatur bei Cyclostomen und höheren Wirbeltieren. Morph. Jb. 21, 473 (1894)Google Scholar
  19. Nachlas, M. M., Tsou, K. C., Souza, E. de, Cheng, C. S., Seligman, A. M.: Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420–235 (1957)Google Scholar
  20. Nag Asish C., Nursall, J. R.: Histogenesis of white and red muscle fibres of trunk muscles of a fish Salmo gairdneri. Cytobiol. 6 (24), 227–246 (1972)Google Scholar
  21. Peters, A., Mackay, B.: The structure and innervation of the myotomes of the lamprey. J. Anat. (Lond.) 95, 575–585 (1961)Google Scholar
  22. Prewitt, M. A., Salafsky, B.: Effect of cross-innervation on biochemical characteristics of skeletal muscles. Amer. J. Physiol. 213 (1), 295–300 (1967)Google Scholar
  23. Reis, D. J., Wooten, G. F.: The relationship of blood flow to myoglobin, capillary density and twitch characteristics in red and white skeletal muscle in cat. J. Physiol. (Lond.) 210, 121–135 (1970)Google Scholar
  24. Reis, D. J., Wooten, G. F., Hollenberg, M.: Differences in nutrient blood flow of red and white skeletal muscle in cat. Amer. J. Physiol. 213 (3), 592–596 (1967)Google Scholar
  25. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  26. Romanul, F.C.A.: Capillary supply and metabolism of muscle fibers. Arch. Neurol. 12, 497–509 (1965)Google Scholar
  27. Romeis, B.: Mikroskopische Technik. München: R. Oldenbourg 1948Google Scholar
  28. Schiefferdecker, P.: Untersuchungen über die Rumpfmuskulatur von P. fluviatilis in Bezug auf ihren Bau und ihre Kernverhältnisse. Arch. mikr. Anat. 78, 472 (1911)Google Scholar
  29. Stannius, H.: Über den Bau der Muskeln bei Petromyzan fluviatilis. Göttingsche gelehrte Anzeigen. Nachricht 17, (1851)Google Scholar
  30. Stingl, J.: Arrangement of the vascular bed in the skeletal muscles of the rabbit. Folia morph. (Prag) 17, 257–264 (1969)Google Scholar
  31. Teräväinen, H.: Anatomical and physiological studies on muscles of lamprey. J. Neurophysiol. 34, (6), 954–973 (1971)Google Scholar
  32. Tretjakoff, D.: Das periphere Nervensystem des Flußneunauges. Z. wiss. Zool. 129, 359 (1927)Google Scholar
  33. Waterman, R. E.: Development of the lateral musculature in the teleost, Brachydanio rerio: A fine structural study. Amer. J. Anat. 125, 457–494 (1969)Google Scholar
  34. Weibel, E. R.: A stereological method for estimating volume and surface of sarcoplasmic reticulum. J. Microscopy 95, 229–242 (1972)Google Scholar
  35. Weibel, E. R., Elias, H.: Quantitative methods in morphology, Berlin-Heidelberg-New York: p. 9–11 and p. 89–98. Springer 1967Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Haakon R. Lie
    • 1
  1. 1.Institute of AnatomyUniversity of BergenNorway

Personalised recommendations