Theoretical and Applied Genetics

, Volume 91, Issue 8, pp 1288–1292

The transfer of a powdery mildew resistance gene from Hordeum bulbosum L to barley (H. vulgare L.) chromosome 2 (2I)

  • R. A. Pickering
  • A. M. Hill
  • M. Michel
  • G. M. Timmerman-Vaughan


Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.

Key words

Hordeum vulgare Hordeum bulbosum Powdery mildew resistance Gene introgression Irradiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aung T, Thomas H, Jones IT (1977) The transfer of the gene for mildew resistance from Avena barbata (4x) into the cultivated oat A. sativa by an induced translocation. Euphytica 26:623–632Google Scholar
  2. Bennett FGA (1981) The expression of resistance to powdery mildew infection in winter wheat cultivars. I. Seedling resistance. Ann Appl Biol 98:295–303Google Scholar
  3. Fedak G (1992) Perspectives on wide crossing in barley. In: Munck L (ed) Barley genetics VI. Proc 6th Int Barley Genet Symp, vol II. Munksgaard International Publishers Ltd.. Copenhagen, Denmark, pp 683–699Google Scholar
  4. Finch RA, Bennett MD (1979) Action of triploid inducer (tri) on meiosis in barley (Hordeum vulgare L.). Heredity 43:87–93Google Scholar
  5. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991a) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256Google Scholar
  6. Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212Google Scholar
  7. Jørgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152Google Scholar
  8. Lehmann LC (1991) The use of genetic resources for isolating disease resistance for barley cultivar development. In: Munck L (ed) Barley genetics VI. Proc 6th Int Barley Genet Symp, vol I. Munksgaard International Publishers Ltd., Copenhagen, Denmark, pp 650–652Google Scholar
  9. McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640PubMedGoogle Scholar
  10. Michel M (1995) Übertragung von H. bulbosum — Resistenzgenen gegenüber Mehltau und Gerstengelbmosaikvirus in die Kulturgerste. Vortr Pflanzenzüchtg 31:78–79Google Scholar
  11. Michel M, Proeseler G, Scholz M, Pickering R, Melz G (1994) Transfer von Hordeum bulbosum — Genen in die Kulturgerste. Vortr Pflanzenzüchtg 28:187–189Google Scholar
  12. Moseman JG (1968) Reactions of barley to Erysiphe graminis f.sp. hordei from North America, England. Ireland and Japan. Plant Dis Rep 52:463–467Google Scholar
  13. Pickering RA (1992) Monosomic and double monosomic substitutions of Hordeum bulbosum L. chromosomes into H. vulgare L. Theor Appl Genet 84:466–472Google Scholar
  14. Pickering RA, Rennie WF, Cromey MG (1987) Disease resistant material available from the wide hybridization programme at DSIR. Barley Newslett 31:248–250Google Scholar
  15. Pickering RA, Timmerman GM, Cromey MG, Melz G (1994) Characterisation of progeny from backcrosses of triploid hybrids between Hordeum vulgare L. (2x) and H. bulbosum L. (4x) to H. vulgare. Theor Appl Genet 88:460–464Google Scholar
  16. Pickering RA, Hill AM, Timmerman-Vaughan GM, Forbes EM, Cromey MG, Gilpin MJ, Michel M, Scholz M (1995) Prospects for gene introgression from Hordeum bulbosum L. into barley (H. vulgare L.). Proc 2nd Int Triticeae Symp (in press)Google Scholar
  17. Thomas HM, Pickering RA (1983) Chromosome elimination in Hordeum vulgare x H. bulbosum hybrids. 1. Comparisons of stable and unstable amphidiploids. Theor Appl Genet 66:135–140Google Scholar
  18. Thomas HM, Pickering RA (1985) The influence of parental genotype on the chromosome behaviour of Hordeum vulgare x H. bulbosum diploid hybrids. Theor Appl Genet 71:437–442Google Scholar
  19. Timmerman GM, Pickering RA, Melz G (1993) Characterization of Hordeum vulgare L. — H. bulbosum L. chromosome substitution lines by restriction fragment length polymorphism analysis. Genome 36:507–511Google Scholar
  20. Vershinin AV, Salina EA, Solovyov VV, Timofeyeva LL (1990) Genomic organization, evolution, and structural peculiarities of highly repetitive DNA of Hordeum vulgare. Genome 33:441–449Google Scholar
  21. Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84:771–777Google Scholar
  22. Xu J, Snape JW (1989) The resistance of Hordeum bulbosum and its hybrids with H. vulgare to common fungal pathogens. Euphytica 41:273–276Google Scholar
  23. Xu J, Procunier JD, Kasha KJ (1990) Species-specific in situ hybridization of Hordeum bulbosum chromosomes. Genome 33: 628–634Google Scholar
  24. Zabeau M (1992) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application no. 92402629.7Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. A. Pickering
    • 1
  • A. M. Hill
    • 1
  • M. Michel
    • 2
  • G. M. Timmerman-Vaughan
    • 1
  1. 1.New Zealand Institute for Crop and Food Research LimitedChristchurchNew Zealand
  2. 2.Bundesanstalt für Züchtungsforschung an Kulturpflanzen, Institut für Züchtungsmethodik landwirtschaftlicher KulturpflanzenGroß LüsewitzGermany

Personalised recommendations