Advertisement

Cell and Tissue Research

, Volume 209, Issue 1, pp 71–86 | Cite as

Studies on microplasmodia of Physarum polycephalum

I. Classification and locomotion behavior
  • Wolfgang Gawlitta
  • Klaus V. Wolf
  • Hans-Ulrich Hoffmann
  • Wilhelm Stockem
Article

Summary

Depending on the conditions of the axenic shuttle culture, microplasmodia of the acellular slime mold Physarum polycephalum can be subdivided into three classes regarding fine structural organization and protoplasmic streaming activity: (a) spherical and rod-shaped types, (b) ameboid types, and (c) symmetrical types.

In ameboid microplasmodia, the motive force for the irregular protoplasmic streaming activity is generated by alternative contraction and relaxation of a membrane-associated layer, morphologically consisting exclusively of thin filaments (probably actin). The protoplasm flows along a hydraulic pressure gradient produced by the filament layer within limited regions of the cell periphery. In dumbbell-shaped microplasmodia the motive force for the regular protoplasmic shuttle streaming between the two spherical heads is generated both by volume changes of the peripheral cell region (caused by the contractile activity of the membrane-associated filament layer), and by volume changes of the internal cell membrane invagination system (caused by fibrils attached to the basal region of the invaginations). The development from the unordered protoplasmic streaming pattern and less complicated fine structural organization in ameboid microplasmodia to the highly organized protoplasmic shuttle streaming and the more complicated morphology in dumbbell-shaped microplasmodia can be explained by intermediate stages. Whereas the motive force for the transport of smaller amounts of protoplasm can be generated by the exclusive action of a cortical filament layer, the existence of a filament cortex, the display of cytoplasmic fibrils, and the development of plasma membrane invagination appear to be a necessary precondition for the transport of large amounts of protoplasm.

Key words

Microfilaments Protoplasmic streaming Microcinematography Microplasmodia Physarum polycephalum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach F, Achenbach U, Wohlfahrth-Bottermann KE (1979) Plasmalemma invaginations, contraction and locomotion in normal and caffeine-treated protoplasmic drops of Physarum. Europ J Cell Biology 20:12–23Google Scholar
  2. Allera A, Beck R, Wohlfahrt-Bottermann KE (1971) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung VIII. Identifizierung der Plasmafilamente von Physarum polycephalum als F-Actin durch Anlagerung von heavy meromyosin in situ. Cytobiologie 4:437–449Google Scholar
  3. Czarska L, Grebecki A (1966) Membrane folding and plasmamembrane ratio in the movement and shape transformation in Amoeba proteus. Acta Protozoologica 4:201–240Google Scholar
  4. Daniel JW, Järlfors U (1972) Plasmodial ultrastructure of the myxomycete Physarum polycephalum. Tissue and Cell 4:15–36Google Scholar
  5. Daniel JW, Rusch HP (1961) The pure culture of Physarum polycephalum on a partially defined soluble medium. J Gen Microbiol 25:47–59Google Scholar
  6. Danneel S, Weissenfels N (1965) Besseres Fixierungsverfahren zur Darstellung des Grundplasmas von Protozoen und Vertebratenzellen. Mikroskopie 20:89–93Google Scholar
  7. Fleischer M, Wohlfahrth-Bottermann KE (1975) Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10:339–365Google Scholar
  8. Gawlitta W (1977) Cytologische Untersuchungen zum Bewegungsverhalten von verschiedenen Mikroplasmodientypen des azellulären Schleimpilzes Physarum polycephalum. Diplomarbeit Mat Nat Fak Univ BonnGoogle Scholar
  9. Gawlitta W, Stockem W, Wehland J, Weber K (1980) Organization and spatial arrangement of fluorescein-labeled native actin microinjected into normal locomoting and experimentally influenced Amoeba proteus. Cell Tissue Res (in press)Google Scholar
  10. Götz von Olenhusen K, Jücker H, Wohlfahrth-Bottermann KE (1979) Induction of a plasmodial stage of Physarum without plasmalemma invaginations. Cell Tissue Res 197:463–477Google Scholar
  11. Haberey M, Wohlfarth-Bottermann KE, Stockem W (1969) Pinocytose und Bewegung von Amöben VI. Kinematographische Untersuchungen über Bewegungsverhalten der Zelloberfläche von Amoeba proteus. Cytobiologie 1:70–84Google Scholar
  12. Hauser M (1978) Demonstration of membrane-associated and oriented microfilaments in Amoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie 18:95–106Google Scholar
  13. Klein HP, Stockem W (1976) Präparation biologischer Objekte für das Raster-Elektronenmikroskop. Microscopica Acta 78:388–406Google Scholar
  14. Kogon M, Pappas GD (1975) Atypical gap junctions in the ciliary epithelium of the albino rabbit eye. J Cell Biol 66:671–676Google Scholar
  15. Korohoda W, Stockem W (1975) On the nature of hyaline zones in the cytoplasm of Amoeba proteus. Microscopica Acta 77:129–141Google Scholar
  16. Kortzfleisch D v (1976) Elektronenmikroskopische Darstellung der Topographie cytoplasmatischer Actomyosinfibrillen in Protoplasma-Adern von Physarum polycephalum. Protistologica 12:399–413Google Scholar
  17. Kuhl W (1953) Vom Forschungsfilm zur Veröffentlichung. Mikroskopie 7:296–344Google Scholar
  18. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43Google Scholar
  19. Stockem W, Wohlfahrt-Bottermann KE, Haberey M (1969) Pinocytose und Bewegung von Amöben V. Konturveränderungen und Faltungsgrad der Zelloberfläche von Amoeba proteus. Cytobiologie 1:37–57Google Scholar
  20. Stockem W, Weber K, Wehland J (1978) The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum. Cytobiologie 18:114–131Google Scholar
  21. Venable JH, Coggeshall R (1965) A simplified citrate stain for use in electron microscopy. J Cell Biol 25:407fGoogle Scholar
  22. Wehland J, Stockem W, Weber K (1978) Cytoplasmic streaming in Amoeba proteus is inhibited by the actin specific drug phalloidin. Exp Cell Res 115:451–454Google Scholar
  23. Wehland J, Weber K, Gawlitta W, Stockem W (1979) Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. Cell Tissue Res 199:353–372Google Scholar
  24. Wohlfarth-Bottermann KE (1962) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54:514–539Google Scholar
  25. Wohlfahrth-Bottermann KE (1974) Plasmalemma invaginations as characteristic constituents of plasmodia of Physarum polycephalum. J Cell Science 16:26–37Google Scholar
  26. Wohlfahrth-Bottermann KE (1975) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung X. Die Anordnung der Actomyosin-Fibrillen in experimentell unbeeinfluβten Protoplasmaadern von Physarum polycephalum in situ. Protistologica 11:19Google Scholar
  27. Wohlfarth-Bottermann KE (1977) Cytoplasmatische Actomyosine und ihre Bedeutung für Zellbewegungen. 249. Sitzung der Rhein.-Westfälischen Akademie der Wissenschaften. Vorträge N 269:7–49. Westdeutscher Verlag, LeverkusenGoogle Scholar
  28. Wohlfarth-Bottermann KE, Fleischer M (1976) Cycling aggregation pattern of cytoplasmic F-actin coordinated with oscillating tension force generation. Cell Tissue Res 165:327–344Google Scholar
  29. Wolf KV, Hoffmann HU, Stockem W (in preparation) Studies on microplasmodia of Physarum polycephalum: Fine structure and function of the mucous layerGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Wolfgang Gawlitta
    • 1
  • Klaus V. Wolf
    • 1
  • Hans-Ulrich Hoffmann
    • 1
  • Wilhelm Stockem
    • 1
  1. 1.Institute for Cytology, University of BonnBonnFederal Republic of Germany

Personalised recommendations