Cell and Tissue Research

, Volume 209, Issue 1, pp 11–28 | Cite as

The pineal complex of the three-spined stickleback, Gasterosteus aculeatus L.

A light-, electron microscopic and fluorescence histochemical investigation
  • Th. van Veen
  • P. Ekström
  • B. Borg
  • M. Møller


The pineal complex of the three-spined stickleback (Gasterosteus aculeatus L.) was investigated by light and electron microscopy, as well as fluorescence histochemistry for demonstration of catecholamines and indolamines. The pineal complex of the stickleback consists of a pineal organ and a small parapineal organ situated on the left side of the pineal stalk. The pineal organ, including the entire stalk, is comprised mainly of ependymal-type interstitial cells and photoreceptor cells with well-developed outer segments. Both unmyelinated and myelinated nerve fibres are present in the pineal organ. Nerve tracts from the stalk enter the habenular and posterior commissures. A small bundle of nerve fibres connects the parapineal organ and the left habenular body. The presence of indolamines (5-HTP, 5-HT) was demonstrated in cell bodies of both the pineal body and the pineal stalk, and catecholaminergic nerve fibres surround the pineal complex.

Key words

Epiphysis cerebri Parapineal organ Fluorescence histochemistry Electron microscopy Gasterosteus aculeatusTeleostei 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian GK, Kuhar MJ, Roth RH (1973) Serotonin-containing neural perikarya and terminals: differential effects of p-chlorophenylalanine. Brain Res 54:85–101Google Scholar
  2. Baggerman B (1957) An experimental study on the timing of breeding and migration in the three-spined stickleback (Gasterosteus aculeatus L.) Arch Néerl Zool 12:105–317Google Scholar
  3. Bergmann G (1971) Elektronenmikroskopische Untersuchungen am Pinealorgan von Pterophyllum scalare Cuv. et Val. (Cichlidae, Teleostei). Z Zellforsch 119:257–288Google Scholar
  4. Blest AD (1961) Some modifications of Holmes' silver method for insect central nervous systems. Quart J Microsc Sci 102:413–417Google Scholar
  5. Chèze G (1971) Innervation épiphysaire chez Symphodus melops (Poisson-Labride). Bull Soc Zool Fr 96:53–57Google Scholar
  6. Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indolamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of Amniota. Progr Brain Res 52:271–296Google Scholar
  7. Dodt E (1963) Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experientia 19:642–643Google Scholar
  8. Falcon J (1979a) L'organe pinéal du Brochet (Esox lucius, L.) I. Etude anatomique et cytologique. Ann Biol Anim Bioch Biophys 19:445–465Google Scholar
  9. Falcon J (1979b) L'organe pinéal du Brochet (Esox lucius, L) II. Etude en microscopie électronique de la différenciation et de la rudimentation partielle des photorécepteurs; conséquences possibles sur l'élaboration des messages photosensoriels. Ann Biol Anim Biochim Biophys 19:661–668Google Scholar
  10. Falcon J, Moquard JP (1979) L'organe pinéal du Brochet (Esox lucius, L.) III. Voies intrapinéals de conduction des messages photosensoriels. Ann Biol Anim Biochim Biophys 19:1043–1061Google Scholar
  11. Fenwick JC (1970a) Demonstration and effect of melatonin in fish. Gen Comp Endocrinol 14:86–97Google Scholar
  12. Fenwick JC (1970b) The pineal organ: photoperiod and reproductive cycles in the goldfish Carassius auratus L. J Endocrinol 46:101–111Google Scholar
  13. Frisch K von (1911) Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch Ges Physiol 138:319–387Google Scholar
  14. Gern WA, Owens DW, Ralph CL (1978) Plasma melatonin in the trout: day-night change demonstrated by radioimmunoassay. Gen Comp Endocrinol 34:453–458Google Scholar
  15. Hafeez MA (1971) Light microscopic studies on the pineal organ in teleost fishes with special regard to its function. J Morphol 134:281–314Google Scholar
  16. Hafeez MA, Ford P (1967) Histology and histochemistry of the pineal organ in the sockeye salmon, Onchorhynchus nerka, Walbaum. Can. J Zool 45:117–126Google Scholar
  17. Hafeez MA, Quay WB (1969) Histochemical and experimental studies of 5-hydroxytryptamine in pineal organ of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen Comp Endocrinol 13:211–217Google Scholar
  18. Hafeez MA, Zerihun L (1974) Studies on central projections of the pineal nerve tract in rainbow trout, Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tissue Res 154:485–510Google Scholar
  19. Hanyu I, Niwa H (1970) Pineal photosensitivity in three teleosts, Salmo irideus, Plecoglossus altivelis and Mugil cephalus. Rev Can Biol 29:133–140Google Scholar
  20. Hartwig HG, Veen Th van (1979) Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. Transmission recordings in vertebrates. J Comp Physiol 130:277–282Google Scholar
  21. Herwig HJ (1976) Comparative ultrastructural investigations of the pineal organ of the blind cave fish, Anoptichthys jordani, and its ancestor, the eyed river fish, Astyanax mexicanus. Cell Tissue Res 167:297–324Google Scholar
  22. Hill CHA (1894) The epiphysis of teleosts and Amia. J Morphol 9:237–268Google Scholar
  23. Holmgren N (1917) Zur Frage der Epiphysen-Innervation bei Teleostiern. Folia Neuro-Biol 10:1–15Google Scholar
  24. Holmgren N (1918) Über die Epiphy sennerven von Clupea sprattus und harengus. Ark Zool 11, 25:1–5Google Scholar
  25. Holmgren U (1959) On the structure of the pineal area of teleost fishes with special reference to a few deep-sea fishes. Göteborgs Kungl Vetenskaps-Vitterhets-Samhäll Handl Ser B 8(3): 1–66Google Scholar
  26. Holmgren U (1965) On the ontogeny of the pineal and parapineal organs in teleost fishes. Progr Brain Res 10:172–182Google Scholar
  27. Holt EWL (1891) Observations upon the development of the teleostean brain, with special references to that of Clupea harengus. Zool Jb Anat Ontog 4:478–500Google Scholar
  28. Korf HW (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489Google Scholar
  29. Lorén I, Björklund A, Falck B, Lindvall O (1976) An improved histofluorescence procedure for freeze-dried paraffin embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochemistry 49:177–192Google Scholar
  30. Manina AA (1979) The synapses of the nervous system. Int Rev Cytol 57:345–383Google Scholar
  31. McNulty JA (1976) A comparative study of the pineal complex in the deep-sea fishes Bathylagus wesethi and Nezumia liolepis. Cell Tissue Res 172:205–225Google Scholar
  32. McNulty JA (1978) A light and electron microscopic study of the pineal in the blind goby, Typhlogobius californiensis (Pisces: Gobiidae). J Comp Neurol 181:197–212Google Scholar
  33. Meissl H, Donley CS, Wissler JH (1978) Free amino acid and amines in the pineal organ of the rainbow trout (Salmo gairdneri): influence of light and dark. Comp Biochem Physiol 61C:401–405Google Scholar
  34. Møller M, Veen Th van (in press) Fluorescence histochemistry. In: Reiter RJ (ed) The Pineal: Its Anatomy and Biochemistry. CRC pressGoogle Scholar
  35. Morita Y (1966) Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch Ges Physiol 289:155–167Google Scholar
  36. Motte I de la (1964) Untersuchungen zur vergleichenden Physiologie der Lichtempfindlichkeit geblendeter Fische. Z Vergl Physiol 49:58–90Google Scholar
  37. Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenhome GEW, Knight J (eds) The Pineal Gland. A Ciba Foundation Symposium. Churchill-Livingstone, Edinburgh and London, pp 127–146Google Scholar
  38. Oksche A, Hartwig HG (1975) Photoneuroendocrine systems and the third ventricle. Brain-Endocrine Interaction II. The Ventricular System. 2nd Int. Symp., Shizuoka 1974, Knigge KM, Scott DE, Kobayashi H, Ishii S (eds). Karger, Basel, pp 40–53Google Scholar
  39. Oksche A, Hartwig HG (1979) Pineal sense organs — components of photo-neuro-endocrine systems. Prog Brain Res 52:113–130Google Scholar
  40. Oksche A, Kirschstein H (1967) Die Ultrastruktur der Sinneszellen im Pinealorgan von Phoxinus laevis L. Z Zellforsch 78:151–166Google Scholar
  41. Owman C, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550Google Scholar
  42. Pischinger A (1930) Zur selektiven Darstellung der Kerne und Nissl-Schollen mit gepufferten Farblösungen. Verh Anat Ges 232Google Scholar
  43. Quay WB (1965) Retinal and pineal hydroxyindole-0-methyl transferase activity in vertebrates. Life Sci 4:983–991Google Scholar
  44. Rasquin P (1958) Studies in the control of pigment cells and light reactions in recent teleost fishes. 1. Morphology of the pineal region. Bull Am Mus Nat Hist 115:7–68Google Scholar
  45. Reiter RJ (1977) The Pineal, Vol. 2. Annual Research Reviews, Churchill-Livingstone/Eden PressGoogle Scholar
  46. Reiter RJ (1978) The Pineal, Vol. 3. Annual Research Reviews, Churchill-Livingstone/Eden PressGoogle Scholar
  47. Relkin R (1976) The Pineal, Vol. 1. Annual Research Reviews, Churchill-Livingstone/Eden PressGoogle Scholar
  48. Rüdeberg C (1966) Electron microscopical observations on the pineal gland of the teleosts Mugil auratus (Risso) and Uranoscopus scaber (Linné). Publ Staz Zool Napoli 35:47–60Google Scholar
  49. Rüdeberg C (1968) Structure of the pineal organ of the sardine, Sardina pilchardus sardina (Risso), and some further remarks on the pineal organ of Mugil spp. Z Zellforsch 84:219–237Google Scholar
  50. Rüdeberg C (1969) Structure of the parapineal organ of the adult rainbow trout, Salmo gairdneri Richardson. Z Zellforsch 93:282–304Google Scholar
  51. Rüdeberg C (1971) Structure of the pineal organs of Anguilla anguilla L. and Lebistes reticulatus Peters (Teleostei). Z Zellforsch 122:227–243Google Scholar
  52. Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen. Z Vergl Physiol 7:1–38Google Scholar
  53. Smith JR, Weber LJ (1974) Diurnal fluctuation in acetylserotonin methyltransferase (ASMT) activity in the pineal gland of the steelhead trout (Salmo gairdneri). Proc Soc Exp Biol Med 147:441–443Google Scholar
  54. Smith JR, Weber LJ (1976) The regulation of day-night changes in hydroxyindole-0-methyltransferase activity in the pineal gland of steelhead trout (Salmo gairdneri). Can J Zool 54:1530–1534Google Scholar
  55. Studnička KA (1905) Die Parietalorgane. In: Oppel A (ed) Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere. 5:1–254Google Scholar
  56. Sundararaj BI, Keshavanath P (1976) Effects of melatonin and prolactin treatment on the hypophysialovarian system in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 29:84–96Google Scholar
  57. Tabata M, Tamura R, Niwa H (1975) Origin of the slow potential in the pineal organ of the rainbow trout. Vision Res 15:737–740Google Scholar
  58. Titschack E (1923) Die sekundären Geschlechtsmerkmale von Gasterosteus aculeatus L. Zool Jb Allg Zool Physiol 39:83–148Google Scholar
  59. Urasaki H (1972) Effects of restricted photopheriod and melatonin administration on gonadal weight in the Japanese killifish. J Endocrinol 55:619–620Google Scholar
  60. Veen Th van, Hartwig HG, Müller K (1976) Light-dependent motor activity and photonegative behaviour in the eel, Anguilla anguilla. Evidence for extraretinal and extrapineal photoreception. J Comp Physiol 111:209–219Google Scholar
  61. Vlaming VL de (1975) Effects of pinealectomy on gonadal activity in the cyprinid teleost. Notemigonus crysoleucas. Gen Comp Endocrinol 26:36–49Google Scholar
  62. Vlaming VL de, Sage M, Charlton CB (1974) The effects of melatonin treatment on gonadosomatic index in the teleost, Fundulus similis, and the tree frog, Hyla cinerea. Gen Comp Endocrinol 22:433–438Google Scholar
  63. Vlaming VL de, Vodicnik MJ (1977) Effects of pinealectomy on pituitary gonadotrophs, pituitary gonadotropin potency and hypothalamic releasing activity in Notemigonus crysoleucas. J Fish Biol 10:73–86Google Scholar
  64. Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z Zellforsch 145:287–298Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Th. van Veen
    • 1
  • P. Ekström
    • 1
  • B. Borg
    • 1
  • M. Møller
    • 2
  1. 1.Department of ZoologyUniversity of LundLundSweden
  2. 2.Institute of Medical Anatomy Dept. BUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations