Cell and Tissue Research

, Volume 188, Issue 3, pp 427–447

The structures of dorsal and ventral regions of a dragonfly retina

  • Simon Laughlin
  • Steve McGinness


The apposition eyes of the corduliid dragonfly Hemicordulia tau are each divided by pigment colour, facet size and facet arrangement into three regions: dorsal, ventral, and a posterior larval strip. Each ommatidium has two primary pigment cells, twenty-five secondary pigment cells, and eight receptor cells, all surrounded by tracheae which probably prevent light passing between ommatidia, and reduce the weight of the eye. Electron microscopy reveals that the receptor cells are of two types: small vestigial cells making virtually no contribution to the rhabdom, and full-size typical cells. The ventral ommatidia have a distal typical cell (oriented either horizontally or vertically), four medial typical cells, two proximal typical cells and one full-length vestigial cell. The dorsal ommatidia have only four full-length typical cells, and one distal and three vestigial full-length cells. The cross-section of dorsal rhabdoms is small and circular distally, but expands to a large three-pointed star medially and proximally. The tiered receptor arrangement in the ventral ommatidia is typical of other Odonata but the dorsal structure has not been fully described in other species. Specialised dorsal eye regions are typical of insects that detect others against the sky.

Key words

Insect visual system Photoreceptor structure Dragonfly, Hemicordulia tau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol. 60, 450–477 (1968)Google Scholar
  2. Blest, A.D., Day, W.A.: The rhabdomere organisation of some nocturnal pisaurid spiders in light and darkness. Phil. Trans. B. (in press) (1978)Google Scholar
  3. Eguchi, E.: Fine structure and spectral sensitivities of retinula cells in the dorsal sector of compound eyes in the dragonfly Aeschna. Z. vergl. Physiol. 71, 201–218 (1971)Google Scholar
  4. Eguchi, E., Waterman, T.H.: Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell Tiss. Res. 169, 419–434 (1976)Google Scholar
  5. Gogala, M.: Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaronius Scop. (Neuroptera, Ascalaphidae). Z. vergl. Physiol. 57, 232–243 (1967)Google Scholar
  6. Hamdorf, K., Gogala, M., Schwemer, J.: Beschleunigung der Dunkeladaption eines UV-Rezeptors durch sichtbare Strahlung. Z. vergl. Physiol. 75, 189–199 (1971)Google Scholar
  7. Haya, S.K.: Rhabdom changes in the shrimp Palaemonetes. Cell Tiss. Res. 169, 419–434 (1976)Google Scholar
  8. Herrling, P.L.: Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tiss. Res. 169, 247–266 (1976)Google Scholar
  9. Horridge, G.A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969)Google Scholar
  10. Horridge, G.A.: The separation of visual axes in apposition compound eyes. Proc. roy. Soc. B. (submitted) (1978)Google Scholar
  11. Horridge, G.A., McLean, M.: The dorsal eye of the mayfly Atalophlebia (Ephemeroptera). Proc. roy. Soc. B. (in press) (1978)Google Scholar
  12. Kirschfeld, K., Wenk, P.: The dorsal compound eye of simuliid flies: an eye specialised for the detection of small, rapidly moving objects. Z. Naturforsch. 31, 764–765 (1976)Google Scholar
  13. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. comp. Physiol. 92, 377–396 (1974)Google Scholar
  14. Laughlin, S.B.: Adaptations of the dragonfly retina for contrast detection and the elucidation of neural principles in the peripheral visual system. In: Neural principles in vision (F. Zettler and R. Weiler, eds.), pp. 175–193. Berlin-Heidelberg-New York: Springer 1976 aGoogle Scholar
  15. Laughlin, S.B.: The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. comp. Physiol. 111, 221–247 (1976 b)Google Scholar
  16. Lew, G.T.: Head characters of the Odonata with special reference to the development of the compound eye. Entomol. Am. 14, 41–97 (1933)Google Scholar
  17. Mazokin-Porshniakov, G.A.: Colorimetric study of vision in dragonflies. Biophysica 4, 327–436 (1959)Google Scholar
  18. Meinertzhagen, I.A.: The organisation of perpendicular fibre pathways in the insect optic lobe. Phil. Trans. B. 274, 555–596 (1976)Google Scholar
  19. Menzel, R., Blakers, M.: Functional organisation of an insect ommatidium with a fused rhabdom. Cytobiologie 11, 279–298 (1975)Google Scholar
  20. Naka, K.: Recording of retinal action potentials from single cells in the insect compound eye. J. gen. Physiol. 44, 571–584 (1961)Google Scholar
  21. Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a damselfly. Z. Zellforsch. 98, 17–32 (1969)Google Scholar
  22. Oguma, K.: A histological study on compound eyes of dragonflies. Ent. Mag. Tokyo 3, 101–121 (1917)Google Scholar
  23. Ribi, W.A.: A unique and phylogenetically primitive hymenopteran compound eye. The retina of the digger wasp Sphex cognatus Smith (Hymenoptera, Sphecidae) (manuscript in preparation)Google Scholar
  24. Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol. 49, 289–307 (1965)Google Scholar
  25. Rutherford, D.J., Horridge, G.A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965)Google Scholar
  26. Schinz, R.H.: Structural specialisation in the dorsal retina of the bee, Apis mellifera. Cell Tiss. Res. 162, 23–34 (1975)Google Scholar
  27. Shaw, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9, 999–1029 (1969)Google Scholar
  28. Sherk,T.E.: Development of the compound eyes of dragonflies (Odonata). IV. Development of the adult compound eyes. J. exp. Zool. (submitted) (1977a)Google Scholar
  29. Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. exp. Zool. (submitted) (1977b)Google Scholar
  30. Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973)Google Scholar
  31. Snyder, A.W., Stavenga, D.G., Laughlin, S.B.: Spatial information capacity of compound eyes. J. comp. Physiol. 116, 183–207 (1977)Google Scholar
  32. Trujillo-Cenóz, O.: The structural organisation of the compound eye in insects. In: Handbook of Sensory Physiology VII/2 (M.G.F. Fuortes, ed.), pp. 5–62. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  33. Whittle, A.C.: Particular specialisations in photoreceptors: a review. Zool. Scripta 5, 191–206 (1976)Google Scholar
  34. Zimmerman, K.: Über die Facettenaugen der Libelluliden, Phasmiden und Mantiden. Zool. Jb., Abt. Anat u. Ontog. 37, 1–36 (1914)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Simon Laughlin
    • 1
  • Steve McGinness
    • 1
  1. 1.Department of NeurobiologyResearch School of Biological Sciences, Australian National UniversityCanberraAustralia
  2. 2.Department of NeurobiologyResearch School of Biological Sciences, Australian National UniversityCanberraAustralia

Personalised recommendations