Cell and Tissue Research

, Volume 253, Issue 3, pp 583–595 | Cite as

Light- and electron-microscopic immunocytochemistry of peptidergic neurons innervating thoracico-abdominal neurohaemal areas in the blowfly

  • Hanne Duve
  • Alan Thorpe
  • Dick R. Nässel
Article

Summary

Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.

Key words

Bioactive peptides Coexistence of peptides Immunocytochemistry Electron microscopy Insect nervous system Calliphora erythrocephala, C. vomitoria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostides AA, Chadwick VS, Selden AC, Barr J, Maton PN (1985) Human pancreatic and bilary responses to physiological concentrations of cholecystokinin octapeptide. Clin Sci 69:259–263Google Scholar
  2. Baudry-Partiaglou N, Grillot JP (1975) Ultrastructure des organes périsympathetique de la glossine, Glossina fuscipes quanzenis (Muscidae). CR Acad Sci Ser D 281:921–924Google Scholar
  3. Bishop CA, O'Shea M, Miller RJ (1981) Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): immunological detection and neural localization in the insect nervous system. Proc Natl Acad Sci USA 78:5899–5902Google Scholar
  4. Cantera R, Nässel DR (1987) Postembryonic development of serotonin-immunoreactive neurons in the central nervous system of the blowfly. II The thoracico-abdominal ganglia. Cell Tissue Res 250:449–459Google Scholar
  5. Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc 126:123–143Google Scholar
  6. Carrillo M, Zanuy S, Duve H, Thorpe A (1986) Identification of hormone-producing cells of the endocrine pancreas of the sea bass Dicentrarchus labrax, by ultrastructural immunocytochemistry. Gen Comp Endocrinol 61:287–301Google Scholar
  7. Deschenes RJ, Haun RS, Funckes CL, Dixon JE (1985) A gene encoding rat cholecystokinin: Isolation, nucleotide sequence and promotor activity. J Biol Chem 260:1280–1286Google Scholar
  8. Dockray GJ, Vaillant C, Hutchinson JB (1981) Immunochemical characterization of peptides in endocrine cells and nerves with particular reference to gastrin and cholecystokinin. In: Grossman MI, Walsh JH, Lechago LJ (eds) Cellular basis of chemical messengers in the digestive system. UCLA Press, Los Angeles, pp 215–230Google Scholar
  9. Duve H, Thorpe A (1980) Localization of pancreatic polypeptide (PP)-like immunoreactive material in neurons of the brain of the blowfly, Calliphora erythrocephala (Diptera). Cell Tissue Res 210:101–109Google Scholar
  10. Duve H, Thorpe A (1982) The distribution of pancreatic polypeptide in the nervous system and gut of the blowfly Calliphora vomitoria (Diptera). Cell Tissue Res 233:415–426Google Scholar
  11. Duve H, Thorpe A (1983) Immunocytochemical identification of α-endorphin-like material in neurons of the brain and corpus cardiacum of the blowfly Calliphora vomitoria (Diptera). Cell Tissue Res 233:415–426Google Scholar
  12. Duve H, Thorpe A (1984) Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowfly Calliphora vomitoria (Diptera). Cell Tissue Res 237:309–320Google Scholar
  13. Duve H, Thorpe A (1988) Mapping of enkephalin-related peptides in the nervous system of the blowfly Calliphora vomitoria and their co-localization with cholecystokinin (CCK)- and pancreatic polypeptide (PP)-like peptides. Cell Tissue Res 251:399–415Google Scholar
  14. Duve H, Thorpe A, Neville R, Lazarus NR (1981) Isolation and partial characterization of pancreatic polypeptide-like material in the brain of the blowfly Calliphora vomitoria. Biochem J 197:767–770Google Scholar
  15. Duve H, Thorpe A, Lazarus NR, Lowry PJ (1982) A neuropeptide of the blowfly Calliphora erythrocephala with an amino acid composition homologous with vertebrate pancreatic polypeptide. Biochem J 201:429–432Google Scholar
  16. Duve H, Thorpe A, Rehfeld JF (1985) Localization and characterization of cholecystokinin (CCK)-like peptides in the brain of the blowfly Calliphora vomitoria. In: Kobayashi H, Bern HA, Urano A (eds) Neurosecretion and the biology of neuropeptides. Jpn Sci Soc Press, Tokyo; Springer, Berlin Heidelberg New York, pp 401–409Google Scholar
  17. Duve H, Thorpe A, Scott A (1986) Localization and characterization of opiod-like peptides in the nervous system of the blowfly Calliphora vomitoria. In: Stefano GB (ed) Handbook of Comparative Opioid and related Neuropeptide Mechanisms. CRC Press Inc, Boca Raton, Florida, pp 197–211Google Scholar
  18. Evans P, Myers CM (1986a) The modulatory actions of FMRF-amide and related peptides on locust skeletal muscle. J Exp Biol 126:403–422Google Scholar
  19. Evans P, Myers CM (1986b) Peptidergic and aminergic modulation of insect skeletal muscle. J Exp Biol 124:143–176Google Scholar
  20. Grillot JP (1977) Les organes périsympathetiques des Dipteres. Int J Insect Morphol Embryol 6:303–343Google Scholar
  21. Grillot JP (1983) Morphology and evolution of perisympathetic organs in insects. In: Gupta AP (ed) Neurohaemal organs of arthropods. CC Thomas, Springfield, pp 481–512Google Scholar
  22. Gubler V, Seeburg P, Hoffmann BJ, Gage LP, Udenfriend S (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature 295:206–208Google Scholar
  23. Larsson LI, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218Google Scholar
  24. Maddrell SHP (1970) Neurosecretory control systems in insect. In: Neville AC (ed) Insect ultrastructure. Blackwell Scientific Publ, Oxford, Edinburgh.Google Scholar
  25. Nässel DR (1987) Serotonin and serotonin-immunoreactive neurons in the insect nervous system Progr Neurobiol 30:1–85Google Scholar
  26. Nässel DR, Elekes K (1984) Ultrastructural demonstration of serotonin-immunoreactivity in the nervous system of an insect (Calliphora erythrocephala). Neurosci Lett 48:203–210Google Scholar
  27. Nässel DR, Elekes K (1985) Serotonergic terminals in the neural sheath of the blowfly nervous system: ultrastructural immunocytochemistry and 5,7-dihydroxytryptamine labeling. Neuroscience 15:293–307Google Scholar
  28. Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140Google Scholar
  29. Nässel DR, O'Shea M (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system. J Comp Neurol 265:437–454Google Scholar
  30. Nässel DR, Ohlsson LG, Cantera R (1987) Metamorphosis of identified neurons innervating thoracic neurohaemal organs in the blowfly: transformation of cholecystokinin-like immunoreactive neurons. J Comp Neurol (in press)Google Scholar
  31. Noda M, Furutani Y, Takahashi H, Toyosata M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–206Google Scholar
  32. Normann TC (1965) The neurosecretory system of adult Calliphora erythrocephala. I. The fine structure of the corpus cardiacum with some observations on adjacent organs. Z Zellforsch Mikrosk Anat 67:461–501Google Scholar
  33. O'Shea M, Schaffer M (1985) Neuropeptide function: the invertebrate contribution. Ann Rev Neurosci 8:171–198Google Scholar
  34. Raabe M (1965) Etude des phenomenes de neurosecretion au niveau de la chaine nerveuse ventrale des Phasmides. Bull Soc Zool Fr 90:631–637Google Scholar
  35. Raabe M (1982) Insect neurohormones. Plenum Press, New York LondonGoogle Scholar
  36. Raabe M (1983) Role of perisympathetic organs and other neurohaemal organs in the neurosecretory system of insects. In: Gupta AP (ed) Neurohaemal organs of arthropods. CC Thomas, Springfield, pp 552–580Google Scholar
  37. Raabe M (1986) Comparative immunocytochemical studies of release sites of insulin, glucagon and AKH-like products in Locusta migratoria, Periplaneta americana and Carausius morosus. Cell Tissue Res 245:267–271Google Scholar
  38. Raabe M, Provensal A (1972) Les organes périsympathetic des Paléopteres. CR Acad Sci Ser D 275:925–928Google Scholar
  39. Rehfeld JF (1985) Neuronal cholecystokinin. One or multiple transmitters. J Neurochem 44:1–10Google Scholar
  40. Rehfeld JF (1987) Cholecystokinin. In: Makhlouf GM (ed) Neuroendocrinology of the gut. American Handbook of Physiology. American Physiol Soc, Waverly Press, BaltimoreGoogle Scholar
  41. Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081Google Scholar
  42. Scharrer B (1963) Neurosecretion XIII. The ultrastructure of the corpus cardiacum of the insect Leucophaea maderae. Z Zellforsch Mikrosk Anat 60:761–796Google Scholar
  43. Schwartz TW, Gingerich RL, Tager HS (1980) Biosynthesis of pancreatic polypeptide: identification of a precursor and a cosynthesized product. J Biol Chem 225:494–498Google Scholar
  44. Steinbusch HMW, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunocytochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819Google Scholar
  45. Treherne JE (1962) The distribution and exchange of some ions and molecules in the central nervous system of Periplaneta americana. J Exp Biol 39:193–217Google Scholar
  46. Treherne JE, Schofield PK (1979) Ionic homeostasis of the brain microenvironment in insects. Trends Neurosci 2:227–230Google Scholar
  47. Trimmer BA (1985) Serotonin and the control of salivation in the blowfly Calliphora. J Exp Biol 114:307–328Google Scholar
  48. Veenstra JA (1987) Diversity in neurohaemal organs for homologous neurosecretory cells in different insect species as demonstrated by immunocytochemistry with an antiserum to molluscan cardioexcitatory peptide. Neurosci Lett 73:33–37Google Scholar
  49. White K, Hurteau T, Punsal P (1986) Neuropeptide-FMRFamide-like immunoreactivity in Drosophila: development and distribution. J Comp Neurol 247:430–438Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Hanne Duve
    • 1
  • Alan Thorpe
    • 1
  • Dick R. Nässel
    • 2
  1. 1.School of Biological Sciences, Queen Mary CollegeLondon UniversityLondonUK
  2. 2.Department of ZoologyUniversity of LundLundSweden

Personalised recommendations