Advertisement

Cell and Tissue Research

, Volume 253, Issue 3, pp 517–528 | Cite as

Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria

  • Heribert Halex
  • Werner Kaiser
  • Klaus Kalmring
Article

Summary

In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.

Key words

Auditory system Primary sensory neurones Central projections Somatotopic map Information processing Locusts Locusta migratoria Schistocerca gregaria (Insecta) 

Abbreviations

aRT

anterior part of the ring tract

cf

characteristic frequency

MVT

median ventral tract

SEG

suboesophageal ganglion

SMC

supramedian commissure

VMT

ventral median tract

VIT

ventral intermediate tract

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363Google Scholar
  2. Boyan GS (1983) Postembryonic development in the auditory system of the locust. J Comp Physiol 151:499–513Google Scholar
  3. Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol A 157:619–629Google Scholar
  4. Breckow J, Kalmring K, Eckhorn R (1982) Multichannel-recordings and real-time current source density (CSD) analysis in the central-nervous system of insects. Problems and methods of application. Biol Cybern 45:115–121Google Scholar
  5. Delcomyn F (1981) Nickel chloride of intracellular staining of neurons in insects. J Neurobiol 12:623–627Google Scholar
  6. Ghysen A (1980) The projections of sensory neurons in the central nervous system of Drosophila: choice of the appropriate pathway. Dev Biol 78:521–541Google Scholar
  7. Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc Lond [Biol] 243:75–94Google Scholar
  8. Halex H, Beckmann EA, Kaiser W, Kalmring K (1988) Strukturbreitenanalyse an Nervenfasern mit einem optischen Meßverfahren. Leitz-Mitt Wiss Tech (in press)Google Scholar
  9. Jacoson M (1978) Developmental neurobiology. Plenum Press, New York, pp 345–433Google Scholar
  10. Kalmring K, Rehbein H, Kühne R (1979) An auditory giant neuron in the ventral cord of Decticus verrucivorus (Tettigoniidae). J Comp Physiol 132:225–234Google Scholar
  11. Levine RB, Pak C, Linn D (1985) The structure, function and metamorphic reorganization of somatotopically projecting sensory neurons in Manduca sexta larvae. J Comp Physiol A 157:1–13Google Scholar
  12. Michel K, Petersen M (1982) Development of the tympanal organ in larvae of the migratory locust (Locusta migratoria). Cell Tissue Res 222:667–676Google Scholar
  13. Michelsen A (1966) Pitch discrimination in the locust ear: observations on single sense cells. J Insect Physiol 12:1119–1131Google Scholar
  14. Michelsen A (1971) The physiology of the locust ear: I. Frequency sensitivity of single cells in the isolated ear. II. Frequency discrimination based upon resonances in the tympanum. III. Acoustical properties of the intact ear. Z Vergl Physiol 71:49–128Google Scholar
  15. Mothes-Wagner U, Wagner G, Reitze HK, Seitz KA (1984) A standardized technique for the in toto epoxy resin embedding and precipitate-free staining of small specimens covered by strong protective outer surfaces. J Microsc 134:307–313Google Scholar
  16. Murphey RK, Jacklet A, Schuster L (1980) A topographic map of sensory cell terminal arborizations in the cricket CNS: correlation with birthday and position in a sensory array. J Comp Neurol 191:53–64Google Scholar
  17. Murray MJ (1968) Fibre groups in the auditory nerve of the locust. Nature 218:95–96Google Scholar
  18. Petersen M, Kalmring K, Cokl A (1982) The auditory system in larvae of the migratory locust. Physiol Entomol 7:43–54Google Scholar
  19. Quicke DLJ, Brace RC (1979) Differential staining of cobalt- and nickel-filled neurones using rubeanic acid. J Microsc 115:161–163Google Scholar
  20. Rehbein H (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110:233–250Google Scholar
  21. Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord of Locusta migratoria (Acrididae). J Comp Physiol 95:263–280Google Scholar
  22. Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122Google Scholar
  23. Römer H (1985) Anatomical representation of frequency and intensity in the auditory system of Orthoptera. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 25–32Google Scholar
  24. Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262Google Scholar
  25. Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 50:1–154Google Scholar
  26. Silver S, Kalmring K, Kühne R (1980) The responses of central acoustic and vibratory interneurones in bushcrickets and locusts to ultrasonic stimulation. Physiol Entomol 5:427–435Google Scholar
  27. Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99:279–314Google Scholar
  28. Strausfeld NJ, Nässel DR (1981) Neuroarchitectures serving compound eyes of Crustacea and insects. In: Autrum H (ed) Vision in invertebrates. (Handbook of sensory physiology, vol VII/6B) Springer, Berlin Heidelberg New York, pp 1–132Google Scholar
  29. Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc Lond [Biol] 297:91–123Google Scholar
  30. West G, Reitböck HJ (1979) Zur ähnlichkeitsinvarianten Mustererkennung mittels der Fourier-Mellin-Transformation. Elektron Inf-verarb Kybern 15:507–512Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Heribert Halex
    • 1
  • Werner Kaiser
    • 1
  • Klaus Kalmring
    • 1
  1. 1.Fachbereich Biologie-ZoologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations