Cell and Tissue Research

, Volume 178, Issue 4, pp 517–532 | Cite as

The organisation of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus

  • Sally Stowe
  • W. A. Ribi
  • D. C. Sandeman


The gross structure and neuronal elements of the first optic ganglion of two crabs, Scylla serrata and Leptograpsus variegatus, are described on the basis of Golgi (selective silver) and reduced silver preparations. Of the eight retinula cells of each ommatidium, seven end within the lamina, while the eighth cell sends a long fibre to the external medulla. Five types of monopolar neurons are described, three types of large tangential fibres, and one fibre which may be centrifugal. The marked stratification of the lamina is produced by several features. The main synaptic region, the plexiform layer, is divided by a band of tangential fibres; the short retinula fibres end at two levels in the plexiform layer; and two types of monopolar cells have arborisations confined to the distal or proximal parts of the plexiform layer. The information presently available concerning the retina-lamina projection in Crustacea is examined. Some of the implications of retina and lamina structure are discussed in conjunction with what is known about their electrophysiology.

Key words

Visual system Lamina ganglionaris Crab Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aréchiga, H., Wiersma, C.A.G.: Circadian rhythm of responsiveness in crayfish visual units. J. Neurobiol. 1, 71–85 (1969)Google Scholar
  2. Baker, J.R., Williams, Elizabeth, G.: The use of methyl green as a histochemical agent. Quart. J. micr. Sci. 106, 3–13 (1965)Google Scholar
  3. Butler, R.: Very rapid selective silver (Golgi) impregnation and embedding of invertebrate nervous tissue. Brain Res. 33, 540–544 (1971)Google Scholar
  4. Colonnier, M.: The tangential organization of the visual cortex. J. Anat. (Lond.) 98, 327–344 (1964)Google Scholar
  5. Drury, R.A.B., Wallington, E.A.: Carleton's histological technique, 4th ed. London: Oxford Univ. Press 1967Google Scholar
  6. Edwards, A.S.: The structure of the eye of Ligia oceanica L. Tissue & Cell 1, 217–228 (1969)Google Scholar
  7. Eguchi, E., Waterman, T.H.: Fine structure patterns in crustacean rhabdoms. In: The functional organisation of the compound eye (C.G. Bernard, ed.), pp. 105–124. New York: Pergamon Press 1966Google Scholar
  8. Eguchi, E., Waterman, T.H.: Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137, 145–157 (1973)Google Scholar
  9. Eguchi, E., Waterman, T.H., Akiyama, J.: Localisation of the violet and yellow receptor cells in the crayfish retinula. J. gen. Physiol. 62, 355–374 (1973)Google Scholar
  10. Erber, J., Sandeman, D.C.: Real and apparent motion perception by the crab Leptograpsus. II. Electrophysiology. J. comp. Physiol. A. 112, 189–198 (1976)Google Scholar
  11. Glantz, R.M.: Five classes of visual interneurons in the optic nerve of the hermit crab. J. Neurobiol. 4, 301–319 (1973)Google Scholar
  12. Glantz, R.M.: Habituation of the motion detectors of the crayfish optic nerve: Their relationship to the visually evoked defense reflex. J. Neurobiol. 5, 489–510 (1974)Google Scholar
  13. Goldsmith, T.H., Fernandez, H.R.: Comparative studies of crustacean spectral sensitivity. Z. vergl. Physiol. 60, 156–175 (1968)Google Scholar
  14. Hafner, G.S.: The neural organisation of the lamina ganglionaris in the crayfish: A Golgi and EM study. J. comp. Neurol. 152, 255–280 (1973)Google Scholar
  15. Hafner, G.S.: The ultrastructure of retinula cell endings in the compound eye of the crayfish. J. Neurocyt. 3, 295–311 (1974)Google Scholar
  16. Hámori, J., Horridge, G.A.: The lobster optic lamina. I. General organisation. J. Cell Sci. 1, 249–256 (1966a)Google Scholar
  17. Hámori, J., Horridge, G.A.: The lobster optic lamina. II. Types of synapse. J. Cell Sci. 1, 257–270 (1966b)Google Scholar
  18. Hámori, J., Horridge, G.A.: The lobster optic ganglion. III. Degeneration of retinula cell endings. J. Cell Sci. 1, 271–274 (1966c)Google Scholar
  19. Hámori, J., Horridge, G.A.: The lobster optic lamina. IV. Glial cells. J. Cell Sci. 1, 275–280 (1966d)Google Scholar
  20. Hanström, B.: Untersuchungen über das Gehirn, insbesondere die Sehganglien der Crustaceen. Ark. Zool. 16, 1–119 (1924)Google Scholar
  21. Krebs, W.: The fine structure of the retinula of the compound eye of Astacus fluviatilis. Z. Zellforsch. 133, 399–114 (1972)Google Scholar
  22. Kunze, P.: Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z. Zellforsch. 82, 466–478 (1967)Google Scholar
  23. Kunze, P.: Die Orientierung der Retinulazellen im Auge von Ocypode. Z. Zellforsch. 90, 454–462 (1968)Google Scholar
  24. Leggett, L.M.: Polarised light sensitive interneurons in a swimming crab. Nature (Lond.) 262, 709–711 (1976)Google Scholar
  25. Menzel, R., Snyder, A.W.: Polarised light detection in the bee Apis mellifera. J. comp. Physiol. 88, 247–270 (1974)Google Scholar
  26. Nässel, D.R.: The organisation of the lamina ganglionaris of the prawn, Pandalus borealis (Kröyer). Cell Tiss. Res. 163, 445–464 (1975)Google Scholar
  27. Nässel, D.R.: The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus. (Dana). J. comp. Neurol. 167, 341–360 (1976)Google Scholar
  28. Nässel, D.R.: Types and arrangements of neurons in the crayfish optic lamina. (In press 1976)Google Scholar
  29. Ohly, K.P.: The neurons of the first synaptic region of the optic neuropile of the firefly, Phausis splendidula L. (Coleoptera). Cell Tiss. Res. 158, 89–109 (1975)Google Scholar
  30. Parker, G.H.: The retina and optic ganglia in decapods, especially in Astacus. Mitt. Zool. Stat. Neapel 12, 1–73 (1897)Google Scholar
  31. Ramón-Moliner, E.: The Golgi-Cox technique. In: Contemporary research methods in neuroanatomy (ed. Nauta, W.J.H., Ebbesson, S.O.E.). Berlin-Heidelberg-New York: Springer 1970Google Scholar
  32. Ribi, W.A.: The neurons of the first optic ganglion of the bee (Apis mellifera). Advanc. in Anat. 50/4 (1975)Google Scholar
  33. Ribi, W.A.: A Golgi-electron microscope method for insect nervous tissue. Stain Technol. 51, 13–16 (1976)Google Scholar
  34. Rowell, C.H.F.: A general method for silvering invertebrate central nervous systems. Quart. J. micr. Sci. 104, 81–87 (1963)Google Scholar
  35. Rutherford, D.J., Horridge, G.A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965)Google Scholar
  36. Sandeman, D.C., Kien, J., Erber, J.: Optokinetic eye movements in the crab. Carcinus maenas. II. Responses of optokinetic interneurons. J. comp. Physiol. 101, 259–274 (1975)Google Scholar
  37. Schiff, H., Gervasio, A.: Functional morphology of the Squilla retina. Publ. Staz. Zool. Nap. 37, 610–629 (1969)Google Scholar
  38. Scott, S., Mote, M.I.: Spectral sensitivity in some marine crustacea. Vision Res. 14, 659–663 (1974)Google Scholar
  39. Shaw, S.R.: Polarised light responses from crab retinula cells. Nature (Lond.) 211, 92–93 (1966)Google Scholar
  40. Shaw, S.R.: Sense-cell structure and interspecies comparisons of polarised light absorption in arthropod compound eyes. Vision Res. 9, 1031–1040 (1969)Google Scholar
  41. Shivers, R.R.: Fine structure of crayfish optic ganglia. Univ. Kansas Sci. Bull. 47, 677–733 (1967)Google Scholar
  42. Strausfeld, N.J.: Golgi studies on insects. Part II. The optic lobes of Diptera. Phil. Trans. B 258, 135–223 (1970)Google Scholar
  43. Strausfeld, N.J., Blest, A.D.: Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. B 258, 81–134 (1970)Google Scholar
  44. Viallanes, H.: Sur la structure de la lame ganglionnaire des crustacés décapodes. Bul. Soc. Zool. de France XVI (1891)Google Scholar
  45. Wiersma, C.A.G., Yamaguchi, T.: The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J. comp. Neurol. 128, 333–358 (1966)Google Scholar
  46. Wiersma, C.A.G., York, B.: Properties of the seeing fibres in the rock lobster: field structure, habituation, attention and distraction. Vision Res. 12, 627–640 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Sally Stowe
    • 1
  • W. A. Ribi
    • 1
  • D. C. Sandeman
    • 1
  1. 1.Department of NeurobiologyResearch School of Biological Sciences, Australian National UniversityCanberraAustralia

Personalised recommendations