Human Genetics

, Volume 88, Issue 5, pp 513–523

Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease

  • P. Leinekugel
  • S. Michel
  • E. Conzelmann
  • K. Sandhoff
Original Investigations


A previously suggested model for the correlation between residual activity of a lysosomal enzyme and the turnover rate of its substrate(s) has been extended to a discussion of substrate accumulation rates in individual cells and whole organs. With these considerations, much of the observed variability in age of onset and clinical phenotype, as well as the phenomenon of pseudodeficiency, can be understood as the consequences of small differences in the residual activity of the affected enzyme. In order to experimentally verify the basic assumptions on which this model rests, studies were performed in cell culture. The radiolabeled substrates ganglioside GM2 and sulfatide were added to cultures of skin fibroblasts with different activities of β-hexosaminidase A or arylsulfatase A, respectively, and their uptake and turnover measured. In both series of experiments, the correlation between residual enzyme activity and the turnover rate of the substrate was essentially as predicted: degradation increased steeply with residual activity, to reach the control level at a residual activity of approximately 10–15% of normal. All cells with an activity above this critical threshold had a normal turnover. Comparison of the results of these feeding studies with the clinical status of the donor of each cell line basically confirmed our notions but also revealed the limitations of the cell culture approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee A, Burg J, Conzelmann E, Carroll M, Sandhoff K (1984) Enzyme-linked immunosorbent assay for the ganglioside GM2-activator protein. Screening of normal human tissues and body fluids, of tissues of GM2 gangliosidosis, and for its subcellular localization. Hoppe-Seyler's Z Physiol Chem 365:347–356CrossRefPubMedGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Conzelmann E, Sandhoff K (1979) Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe-Seyler's Z Physiol Chem 360:1837–1849CrossRefGoogle Scholar
  5. Conzelmann E, Sandhoff K (1983/84) Partial enzyme deficiencies: residual activities and the development of neurologic disorders. Dev Neurosci 6:58–71CrossRefGoogle Scholar
  6. Conzelmann E, Sandhoff K (1987a) Activator proteins for lysosomal glycolipid hydrolysis. In: Glick D (ed) Methods of biochemical analysis, vol 32. Wiley, New York, pp 1–23CrossRefGoogle Scholar
  7. Conzelmann E, Sandhoff K (1987b) Activator proteins for lysosomal glycolipid hydrolysis. Methods Enzymol 138:792–815CrossRefPubMedGoogle Scholar
  8. Conzelmann E, Kytzia H-J, Navon R, Sandhoff K (1983) Ganglioside GM2 N-acetyl-β-D-galactosaminidase activity in cultured fibroblasts of late-infantile and adult GM2 gangliosidosis patients and of healthy probands with low hexosaminidase levels. Am J Hum Genet 35:900–913PubMedPubMedCentralGoogle Scholar
  9. Conzelmann E, Nehrkorn H, Kytzia H-J, Sandhoff K, Macek M, Lehovsky M, Elleder M, Jirasek A, Kobilkova J (1985) Prénatal diagnosis of GM2 gangliosidosis with high residual hexosaminidase A activity (Variant B1; pseudo AB variant) Pediatr Res 19:1220–1224CrossRefPubMedGoogle Scholar
  10. Federico A, Palmeri S, Mangano L, Mondelli M, Rossi A, Guazzi GC (1987) Clinical and neurophysiological changes in carriers from a family with type 0 chronic GM2 gangliosidosis with ALS phenotype. In: Salvayre R, Douste-Blazy L, Gatt S (eds) Lipid storage disorders — biological and medical aspects. (NATO ASI Series, vol A 150) Plenum Press, New York, pp 253–258Google Scholar
  11. Harzer K, Kustermann-Kuhn B (1987) Brain galactolipid content in a case with pseudo arylsulfatase A deficiency and coincidental diffuse disseminated sclerosis and in cases with metachromatic, adreno-and other leukodystrophies. J Neurochem 48:62–66CrossRefPubMedGoogle Scholar
  12. Hasilik A, von Figura K, Conzelmann E, Nehrkorn H, Sandhoff K (1982) Lysosomal enzyme precursors in human fibroblasts. Activation of cathepsin D-precursors in vitro and activity of β-hexosaminidase A precursor towards ganglioside GM2. Eur J Biochem 125:317–321CrossRefPubMedGoogle Scholar
  13. Heukels-Dully MJ, Niermeijer MF (1976) Variation in lysosomal enzyme activity during growth in culture of human fibroblasts and amniotic fluid cells. Exp Cell Res 97:304–312CrossRefPubMedGoogle Scholar
  14. Hoffman LM, Amsterdam D, Brooks SE, Schneck L (1977) Glycosphingolipids in fetal Tay-Sachs disease brain and lung cultures. J Neurochem 29:551–559CrossRefPubMedGoogle Scholar
  15. Hohenschutz C, Friedl W, Schlör K-H, Waheed A, Conzelmann E, Sandhoff K, Propping P (1988) A probable MLD/PD compound at the arylsulfatase A locus with neurological and psychiatric symptomatology. Am J Med Genet 31:169–175CrossRefPubMedGoogle Scholar
  16. Hohenschutz C, Eich P, Friedl W, Waheed A, Conzelmann E, Propping P (1989) Pseudodeficiency of arylsulfatase A: a common genetic polymorphism with possible disease implications. Hum Genet 82:45–48CrossRefPubMedGoogle Scholar
  17. Hreidarsson SJ, Thomas GH, Kihara H, Fluharty AL, Kolodny EH, Moser HW, Reynolds LW (1983) Impaired cerebroside sulfate hydrolysis in fibroblasts of sibs with “pseudo” arylsulfatase A deficiency without metachromatic leukodystrophy. Pediatr Res 17:701–704CrossRefPubMedGoogle Scholar
  18. Kappler J, Leinekugel P, Conzelmann E, Kleijer WJ, Kohlschütter A, Tønnesen T, Rochel M, Freycon F, Propping P (1991a) Genotype-phenotype relationship in various degrees of arylsulfatase A deficiency. Hum Genet 86:463–470CrossRefPubMedGoogle Scholar
  19. Kappler J, Watts RWE, Conzelmann E, Gibbs DA, Propping P, Gieselmann V (1991b) Low arylsulfatase A acitivity and choreoathetotic syndrome in three siblings: Differentiation of pseudodeficiency from metachromatic leukodystrophy. Eur J Pediatr 150:287–290CrossRefPubMedGoogle Scholar
  20. Kihara H, Ho C-K, Fluharty AL, Tsay KK, Hartlage PL (1980) Prenatal diagnosis of metachromatic leukodystrophy in a family with pseudo arylsulfatase A deficiency by the cerebroside sulfate loading test. Pediatr Res 14:224–227CrossRefPubMedGoogle Scholar
  21. Kolodny EH (1989) Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The methabolic basis of inherited disease, 6th end. McGraw-Hill, New York, pp 1721–1750Google Scholar
  22. Kresse H, Fuchs W, Glössl J, Holtfrerich D, Gilberg W (1981) Liberation of N-acetylglucosamine-6-sulfate by human β-N-acetyl-hexosaminidase A. J Biol Chem 256:12926–12932PubMedGoogle Scholar
  23. Lapidot Y, Rappaport S, Woleman Y (1967) Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res 8:142–145PubMedGoogle Scholar
  24. Lee-Vaupel M, Conzelmann E (1987a) A simple chromogenic assay for arylsulfatase A. Clin Chim Acta 164:171–180CrossRefPubMedGoogle Scholar
  25. Lee-Vaupel M, Conzelmann E (1987b) Assay for cerebroside sulfate (sulfatide) sulfatase in cultured skin fibroblasts with the natural activator protein. Clin Chim Acta 168:55–68CrossRefPubMedGoogle Scholar
  26. Miller AL, Kress BC, Stein R, Kinnon C, Schneider JA, Harms E (1981) Properties of N-acetyl-β-D-hexosaminidase from isolated normal and I-cell lysosomes. J Biol Chem 256:9352–9362PubMedGoogle Scholar
  27. Molzer B, Sundt-Heller R, Kainz-Korschinsky M, Bernheimer H (1989) Increased sulphatide excretion in metachromatic leukoystrophy heterozygotes. J Clin Chem Clin Biochem 27:755Google Scholar
  28. Navon R, Argov Z, Frisch A (1986) Hexosaminidase deficiency in adults. Am J Med Genet 24:179–196CrossRefPubMedGoogle Scholar
  29. Paschke E, Kresse H (1982) Morquio disease, type B: activation of GM1 β-galactosidase by GM1 activator protein. Biochem Biophys Res Commun 109:568–575CrossRefPubMedGoogle Scholar
  30. Plant JWE (1963) Inosine diphosphatase (nucleoside diphosphatase) from mammalian liver. Methods Enzymol 6:231–236CrossRefGoogle Scholar
  31. Polten A, Fluharty AL, Fluharty CB, Kappler J, Von Figura K, Gieselmann V (1991) Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 324:18–22CrossRefPubMedGoogle Scholar
  32. Porter MT, Fluharty AL, Trammell J, Kihara H (1971) A correlation of intracellular cerebroside sulfatase activity in fibroblasts with latency in metachromatic leukodystrophy. Biochem Biophys Res Commun 44:660–666CrossRefPubMedGoogle Scholar
  33. Raghavan SS, Krusell A, Krusell J, Lyerla TA, Kolodny EH (1985) GM2-Ganglioside metabolism in hexosaminidase A deficiency: determination in situ using labelled GM2 added to fibroblast cultures. Am J Hum Genet 37:1071–1082PubMedPubMedCentralGoogle Scholar
  34. Rapin I, Suzuki K, Suzuki K, Valsamis MP (1976) Adult (Chronic) GM2 gangliosidosis: atypical spinocerebellar degeneration in a Jewish sibship. Arch Neurol 33:120–130CrossRefPubMedGoogle Scholar
  35. Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K (1989) The GM2 Gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. 6th edn. McGraw-Hill, New York, pp 1807–1839Google Scholar
  36. Schwarzmann G (1978) A simple and novel method for tritium labeling of gangliosides and other sphingolipids. Biochim Biophys Acta 529:106–114CrossRefPubMedGoogle Scholar
  37. Schwarzmann G, Sandhoff K (1987) Lysogangliosides: synthesis and use in preparing labeled gangliosides. Methods Enzymol 138:319–341CrossRefPubMedGoogle Scholar
  38. Sonderfeld S, Conzelmann E, Schwarzmann G, Burg J, Hinrichs U, Sandhoff K (1985) Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem 149:247–255CrossRefPubMedGoogle Scholar
  39. Sonnino S, Kirschner G, Ghidoni R, Acquotti D, Tettamanti G (1985) Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res 26:248–257PubMedGoogle Scholar
  40. Suzuki Y, Suzuki K (1972) Specific radioactive labeling of terminal N-acetylgalactosamine of glycosphingolipids by galactose oxidase-sodium borohydride method. J Lipid Res 13:687–690PubMedGoogle Scholar
  41. Suzuki K, Suzuki Y (1989) Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease 6th edn. McGraw-Hill, New York, pp 1699–1720Google Scholar
  42. Svennerholm L (1972) Gangliosides, isolation. Methods Carbohydr Chem 6:464–474Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. Leinekugel
    • 1
  • S. Michel
    • 1
  • E. Conzelmann
    • 1
  • K. Sandhoff
    • 1
  1. 1.Institut für Organische Chemie und Biochemie der UniversitätBonn 1Germany
  2. 2.Physiologisch-Chemisches InstitutBiozentrum der UniversitätWürzburgGermany

Personalised recommendations