Cell and Tissue Research

, Volume 178, Issue 2, pp 249–265 | Cite as

Light and electron microscopic study on the pineal complex of the coelacanth, Latimeria chalumnae Smith

  • M. A. Hafeez
  • M. E. Merhige


The pineal complex of the coelacanth, Latimeria chalumnae was studied light and electron microscopically. It consists of two vesicles representing parapineal and pineal organs. Both occur intracranially and openly communicate with each other and the brain ventricle. The entire complex shows a striking photoreceptor morphology with sensory, ependymal and nerve cells. The last cell type is more abundant in the parapineal vesicle than in the pineal organ. The following ultrastructural details of the parapineal are noteworthy:
  1. 1.

    The sensory cells possess large inner and outer segments protruding freely in the vesicular cavity. The outer segments measure 8–10 μm in length and consist of as many as 275 lamellae. The basal processes of these cells terminate in neuropil-like regions. Occasionally, dense granules (500–1000 Å) of uncertain identity occur in the perinuclear and inner segment cytoplasm of the cells.

  2. 2.

    The supporting cells are of the ependymal type. Their cytoplasm contains a filamentous feltwork and pinocytotic vesicles, but lacks secretory granules. Cytosomes are particularly abundant in cell processes in the neuropil-like zones. The basal end-feet of these cells isolate the receptor and nerve cells from the perivascular space.

  3. 3.

    In the neuropil-like regions, terminals of sensory cells make synaptic contacts with neuronal dendrites. Synaptic ribbon-like profiles in the terminals characterize the contact zones. Only unmyelinated nerve fibers could be observed in the small area of the tissue examined.


The results are discussed with regard to photoreceptive and secretory functions of the pineal complex and its evolution in lower vertebrates.

Key words

Pineal complex Latimeria Photoreceptors Supporting cells Neuropil-like areas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann, G.: Elektronenmikroskopische Untersuchungen am Pinealorgan von Pterophyllum scalare Cuv. et Val. (Cichlidae, Teleostei). Z. Zellforsch. 119, 257–288 (1971)Google Scholar
  2. Breucker, H., Horstmann, E.: Elektronenmikroskopische Untersuchungen am Pinealorgan der Regenbogenforelle (Salmo gairdneri). Progr. Brain Res. 10, 259–269 (1965)Google Scholar
  3. Collin, J.P.: Contribution à l'étude de l'organe pinéal. De l'épiphyse sensorielle a la glande pinéale: Modalités de transformation et implications fonctionelles. Ann. Stat. Biol. de Besse-en-Chandesse, Suppl. 1, 1–359 (1969)Google Scholar
  4. Dodt, E.: Photosensitivity of the pineal organ in the teleost Salmo irideus (Gibbons). Experientia (Basel) 19, 642 (1963)Google Scholar
  5. Dodt, E.: Aktivierung markhaltiger und markloser Fasern im Pinealnerven bei Belichtung des Stirnorgans. Progr. Brain Res. 5, 201–205 (1964)Google Scholar
  6. Dodt, E.: The parietal eye (pineal and parietal organs) of lower vertebrates. In: Handbook of sensory physiology (R. Jung, ed.), Vol. 7, pt. 3, pp. 113–140. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  7. Dodt, E., Ueck, M., Oksche, A.: Relations of structure and function: The pineal organ of lower vertebrates. In: J.E. Purkyně Centenary Symposium (V. Kruta ed.), pp. 253–278. Brno: Universita Jana Evangelisty Purkyně 1971Google Scholar
  8. Eakin, R.M.: The third eye. Berkeley-Los Angeles-London: University of California Press 1973Google Scholar
  9. Eakin, R.M., Baker, P.C.: Development of the third eye in lizard, Sceloporus occidentalis. Rev. suisse Zool. 71, 267–285 (1964)Google Scholar
  10. Fenwick, J.C.: Demonstration and effect of melatonin in fish. Gen. comp. Endocr. 14, 86–97 (1970)Google Scholar
  11. Friedrich-Freksa, A.: Entwicklung, Bau und Bedeutung der Parietalgegend bei Teleostiern. Z. wiss. Zool. 141, 52–142 (1932)Google Scholar
  12. Grassé, P.P.: Traité de Zoologie, Vol. XIII/3, pp. 2553–2597. Paris: Masson 1958Google Scholar
  13. Hafeez, M.A.: Light microscopic studies on the pineal organ in teleost fishes with special regard to its function. J. Morph. 134, 281–313 (1971)Google Scholar
  14. Hafeez, M.A., Ford, P.: Histology and histochemistry of the pineal organ in the sockeye salmon, Oncorhynchus nerka Walbaum. Canad. J. Zool. 45, 117–126 (1967)Google Scholar
  15. Hafeez, M.A., Quay, W.B.: Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen. comp. Endocr. 13, 211–217 (1969)Google Scholar
  16. Hafeez, M.A., Quay, W.B.: Pineal acetylserotonin methyltransferase activity in the teleost fishes, Hesperoleucus symmetricus and Salmo gairdneri, with evidence for lack of effect of constant light and darkness. Comp. gen. Pharmacol. 1, 257–262 (1970)Google Scholar
  17. Hafeez, M.A., Zerihun, L.: Studies on central projections of the pineal nerve tract in rainbow trout, Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tiss. Res. 154, 485–510 (1974)Google Scholar
  18. Hafeez, M.A., Zerihun, L.: Autoradiographic localization of 3H-5-HTP and 3H-5-HT in the pineal organ and circumventricular areas in the rainbow trout, Salmo gairdneri Richardson. Cell Tiss. Res. 170, 61–77 (1976)Google Scholar
  19. Hamasaki, D.I., Streck, P.: Properties of the epiphysis of the small-spotted dogfish shark, Scyliorhinus canicula L. Vision Res. 11, 189–198 (1971)Google Scholar
  20. Hanyu, I., Niwa, H.: Pineal photosensitivity in three teleosts, Salmo irideus, Plecoglossus altivelus and Mugil cephalus. Rev. Canad. Biol. 29, 133–140 (1970)Google Scholar
  21. Herwig, H.J.: Comparative ultrastructural investigations of the pineal organ of the blind cave fish, Anoptichtys jordani and its ancestor, the eyed river fish, Astyanax mexicanus. Cell Tiss. Res. 167, 297–324 (1976)Google Scholar
  22. Hill, C.: Development of the epiphysis in Coregonus albus. J. Morph. 5, 503–510 (1891)Google Scholar
  23. Hill, C.: The epiphysis of teleosts and Amia. J. Morph. 9, 237–268 (1894)Google Scholar
  24. Holmgren, N.: Zum Bau der Epiphyse von Squalus acanthias, Ark. Zool. 11, 1–28 (1918)Google Scholar
  25. Holmgren, U.: On the structure of the pineal area of teleost fishes, with special reference to a few deep sea fishes. Göteborgs Kgl. Vetenskaps-Vitterhets-Samhäll. Handl., Ser. B 8, 3, 5–66 (1959a)Google Scholar
  26. Holmgren, U.: On the pineal area and adjacent structures of the brain of the dipnoan fish, Protopterus annectens (Owen). Breviora 109, 1–7 (1959b)Google Scholar
  27. Holmgren, U.: On the ontogeny of the pineal and parapineal organs in teleost fishes. Progr. Brain Res. 10, 172–182 (1965)Google Scholar
  28. Kappers, J. Ariëns: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In: Structure and function of the epiphysis cerebri. Progr. Brain Res., Vol. 10 (J. Àriëns Kappers and J.P. Schadé, eds.), pp. 87–153. Amsterdam: Elsevier Publ. 1965Google Scholar
  29. Kappers, J. Ariëns: The sensory innervation of the pineal organ in the lizard, Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch. 81, 581–618 (1967)Google Scholar
  30. Kelly, D.E., Smith, S.W.: Fine structure of the pineal organs of the adult frog, Rana pipiens. J. Cell Biol. 22, 653–674 (1964)Google Scholar
  31. Lagios, M.D.: Granular epithelioid cell and renovascular morphology of the coelacanth Latimeria chalumnae Smith (Crossopterygii) compared with other fishes. Gen. comp. Endocr. 22, 296–307 (1974)Google Scholar
  32. Mahala, A.S.: Interrelationship of crossopterygian fishes. In: Interrelationships of fishes (P.H. Greenwood, R.S. Miles and C. Patterson, eds.), pp. 137–178. 1973Google Scholar
  33. Millot, J., Anthony, J.: Anatomie de Latimeria chalumnae. In: Système nerveux et organes des sens, Vol. II. Paris:Centr. nat. Rech. sci. 1965Google Scholar
  34. Millot, J., Nieuwenhuys, R., Anthony, J.: Le diencéphale de Latimeria chalumnae Smith (poisson Coelacanthidé). C.R. Acad. Sci. (Paris) 258, 5051–5055 (1964)Google Scholar
  35. Morita, Y.: Extra- und intrazelluläre Ableitungen einzelner Elemente des lichtempfindlichen Zwischenhirns anurer Amphibien. Pflügers Arch. ges Physiol. 286, 97–108 (1965)Google Scholar
  36. Morita, Y.: Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch. ges Physiol. 289, 155–167 (1966)Google Scholar
  37. Morita, Y., Bergmann, G.: Physiologische Untersuchungen und weitere Bemerkungen zur Struktur des lichtempfindlichen Pinealorgans von Pterophyllum scalare Cuv. et Val. (Cichlidae, Teleostei). Z. Zellforsch. 119, 289–294 (1971)Google Scholar
  38. Nilson, S.E.G.: Receptor cell outer segment development and ultrastructure of the disk membranes in the retina of the tadpole (Rana pipiens). J. Ultrastruct. Res. 11, 581–620 (1964)Google Scholar
  39. Oguri, M., Omura, Y., Hibiya, T.: Uptake of 14C-labelled 5-hydroxytryptophan into the pineal organ of rainbow trout. Bull. Jap. Soc. sci. Fish. 34, 687–690 (1968)Google Scholar
  40. Oksche, A.: Survey of development and comparative morphology of the pineal organ. Progr. Brain Res. 10, 3–29 (1965)Google Scholar
  41. Oksche, A.: Sensory and glandular elements of the pineal organ. In: The pineal gland (G.E. Wolstenholme and J. Knight, eds.). Symposium of the Ciba Foundation (London, 1970). London: J. & A. Churchill 1971Google Scholar
  42. Oksche, A., Kirschstein, H.: Die Ultrastruktur der Sinneszellen im Pinealorgan von Phoxinus laevis L. Z. Zellforsch. 78, 151–166 (1967)Google Scholar
  43. Oksche, A., Kirschstein, H.: Unterschiedlicher elektronenmikroskopischer Feinbau der Sinneszellen im Parietalauge und im Pinealorgan (Epiphysis cerebri) der Lacertilia. Ein Beitrag zum Epiphysenproblem. Z. Zellforsch. 87, 159–192 (1968)Google Scholar
  44. Oksche, A., Kirschstein, H.: Weitere elektronenmikroskopische Untersuchungen am Pinealorgan von Phoxinus laevis (Teleostei, Cyprinidae). Z. Zellforsch. 112, 572–588 (1971)Google Scholar
  45. Oksche, A., Vaupel-von Harnack, M.: Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren (Zur Frage der Lichtrezeptoren). Z. Zellforsch. 59, 239–288 (1963)Google Scholar
  46. Omura, Y., Oguri, M.: Histological studies on the pineal organ of 15 species of teleosts. Bull. Jap. Soc. sci. Fish. 35, 991–1000 (1969)Google Scholar
  47. Omura, Y., Oguri, M.: The development and degeneration of the photoreceptor segments of the fish pineal organ. Bull. Jap. Soc. sci. Fish. 37, 851–860 (1971)Google Scholar
  48. Petit, A.: Ultrastructure de la rétine de l'oeil pariétal d'un Lacertilien, Anguis fragilis. Z. Zellforsch. 92, 70–93 (1968)Google Scholar
  49. Quay, W.B.: Retinal and pineal hydroxyindole-O-methyl transferase activity in vertebrates. Life Sci. 4, 983–991 (1965)Google Scholar
  50. Reed, R.L., Finnin, B.C., Ruffin, N.E.: The effect of melatonin and epinephrine on the melanophores of freshwater teleosts. Life Sci. 8, 113–120 (1969)Google Scholar
  51. Rüdeberg, C.: Electron microscopical observations on the pineal organ of the teleosts Mugil auratus (Risso) and Uranoscopus scaber (Linné). Publ. Staz. zool. Napoli 35, 47–60 (1966)Google Scholar
  52. Rüdeberg, C.: Structure of the pineal organ of the sardine, Sardina pilchardus sardina (Risso) and some further remarks on the pineal organ of Mugil spp. Z. Zellforsch. 84, 219–237 (1968)Google Scholar
  53. Rüdeberg, C.: Structure of the parapineal organ of the adult trout, Salmo gairdneri Richardson. Z. Zellforsch. 93, 282–304 (1969a)Google Scholar
  54. Rüdeberg, C.: Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z. Zellforsch. 96, 548–581 (1969b)Google Scholar
  55. Rüdeberg, C.: Structure of the pineal organ of Anguilla anguilla L. and Lebistes reticulatus Peters (Teleostei). Z. Zellforsch. 122, 227–243 (1971)Google Scholar
  56. Studnička, F.K.: Die Parietalorgane. In A. Oppel (ed.), Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere, Teil V. Jena: Gustav Fischer 1905Google Scholar
  57. Takahashi, H.: Light and electron microscopic studies on the pineal organ of the goldfish, Carassius auratus L. Bull. Fac. Fish., Hokkaido Univ. 20, 143–157 (1969)Google Scholar
  58. Takahashi, H., Kasuga, S.: Fine structure of the pineal organ of the medaka, Oryzias latipes. Bull. Fac. Fish., Hokkaido Univ. 22, 1–10 (1971)Google Scholar
  59. Terry, R.J.: The morphology of the pineal region in teleosts. J. Morph. 21, 321–358 (1910)Google Scholar
  60. Tilney, F., Warren, L.F.: The morphology and evolutional significance of the pineal body. Amer. anat. Memoirs 9. Philadelphia: Wistar Institute 1919Google Scholar
  61. Ueck, M.: Ultrastrukturbesonderheiten der pinealen Sinneszellen von Protopterus dolloi. Z. Zellforsch. 100, 560–580 (1969)Google Scholar
  62. Vlaming, V.L. de, Sage, M., Charleton, C.B.: The effect of melatonin treatment on gonosomatic index in the teleost, Fundulus similis and the tree frog, Hyla cinerea. Gen. comp. Endocr. 22, 433–439 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. A. Hafeez
    • 1
  • M. E. Merhige
    • 1
  1. 1.School of Biological Sciences, University of KentuckyLexingtonUSA

Personalised recommendations