Boundary-Layer Meteorology

, Volume 10, Issue 1, pp 15–34 | Cite as

Errors in wind-speed measurements by rotation anemometers

  • E. I. Kaganov
  • A. M. Yaglom


A perturbation theory approach of non-linear mechanics is applied to the solution of a non-linear rotation anemometer dynamic equation in a gusty wind. The first two terms of the perturbation series give a simplified equation for the wind-speed overestimation by a rotation anemometer (u-error) in terms of a wind velocity spectrum (or a correlation function). The equation agrees satisfactorily with all the known analytical or numerical solutions of rotation anemometer equations. It agrees, in particular, with recent theoretical estimations of the u-error magnitude by Kondo et al. (1971) and Hyson (1972), but disagrees significantly with the experimental findings of Izumi and Barad (1970) and Högström (1974). The same approach is also used for the estimation of the influence of the vertical wind fluctuations on the rotation anemometer readings (w-error). It is shown that w-error is usually of the same sign as u-error and that the sum of these both types of errors may be in some cases of the same order as an experimental wind-speed overestimation observed by Izumi and Barad and by Högström. However, it seems probable that some additional types of errors contribute also to the real overspeeding of rotation anemometers in a gusty wind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmospheric Sci. 28, 181–189.Google Scholar
  2. Deacon, E. L.: 1951, The Over-Estimation Error of Cup Anemometers in Fluctuating Winds. J. Sci. Instr. 28, 231–234.Google Scholar
  3. Frenzen, P.: 1973, The Observed Relation Between the Kolmogorov and von Kármán Constants in the Surface Boundary Layer, Boundary-Layer Meteorol. 3, 348–358.Google Scholar
  4. Frenzen, P.: 1974, On the Response of Low-Inertia Cup Anemometers in Real Turbulence; a Reply, Boundary-Layer Meteorol. 6, 523–526.Google Scholar
  5. Garratt, J. R.: 1974, Note on a Paper by Frenzen: “The Observed Relation Between the Kolmogorov and von Kármań Constants in the Surface Boundary Layer”, Boundary-Layer Meteorol. 6, 519–521.Google Scholar
  6. Gill, G. L.: 1973, Comments on “Wind Speeds as Measured by Cup and Sonic Anemometers and Influenced by Tower Structure”, J. Appl. Meteorol., 12, 732–735.Google Scholar
  7. Goltsman, M. I.: 1950, Foundations of the Methods of Micrometeorological Measurements, Gosizdat, Moscow, 360 pp. (in Russian).Google Scholar
  8. Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer, Quart. J. Roy. Meteorol. Soc. 97, 168–180.Google Scholar
  9. Högström, U.: 1974, A Field Study of the Turbulent Fluxes of Heat, Water Vapour and Momentum at a “Typical” Agricultural Site, Quart. J. Roy. Meteorol. Soc. 100, 624–639.Google Scholar
  10. Hyson, P.: 1972, Cup Anemometer Response to Fluctuating Wind Speeds, J. Appl. Meteorol. 11, 843–848.Google Scholar
  11. Izumi, Y. and Barad, M. L.: 1970, Wind Speeds as Measured by Cup and Sonic Anemometers and Influenced by Tower Structure, J. Appl. Meteorol. 9, 251–256.Google Scholar
  12. Izumi, Y. and Barad, M. L.: 1973, Reply to Comments by G. Gill, J. Appl. Meteorol. 12, 735.Google Scholar
  13. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, Spectral Characteristics of Surface-Layer Turbulence, Quart. J. Roy. Meteorol. Soc. 98, 563–589.Google Scholar
  14. Kaimal, J. C.: 1973, Turbulence Spectra, Length Scales and Structure Parameters in the Stable Surface Layer, Boundary-Layer Meteorol. 4, 289–309.Google Scholar
  15. Kondo, J., Naito, G., and Fujinawa, Y.: 1971, Response of Cup Anemometer in Turbulence, J. Meteorol. Soc. Japan 49, 63–74.Google Scholar
  16. Kondo, J. and Fujinawa, Y.: 1972, Errors in Estimation of Drag Coefficients for Sea Surface in Light Winds, J. Meteorol. Soc. Japan 50, 145–149.Google Scholar
  17. MacCready, P. B.: 1966, Mean Wind Measurements in Turbulence, J. Appl. Meteorol. 5, 219–225.Google Scholar
  18. Mazzarela, D. A.: 1972, An Inventory of Specifications for Wind Measuring Instruments, Bull. Amer. Meteorol. Soc. 53, 860–871.Google Scholar
  19. Middleton, W. E. and Spilhaus, A. F.: 1953, Meteorological Instruments, University of Toronto Press, 286 pp.Google Scholar
  20. Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, vol. 1, The MIT Press, 769pp.Google Scholar
  21. Moses, H.: 1968, ‘Meteorological Instruments for Use in the Atomic Energy Industry’, chapter 6 in Meteorology and Atomic Energy (ed. by D. H. Slade), U.S. Atomic Energy Commission.Google Scholar
  22. Ower, E.: 1949, The Measurements of Air Flow, Chapman and Hall, London.Google Scholar
  23. Ramachandran, S.: 1969, A Theoretical Study of Cup and Vane Anemometers, Quart. J. Roy. Meteorol. Soc. 95, 163–180.Google Scholar
  24. Sabinin, G.: 1923, Les anémometers à moulinet et la mesure à leur aide de la vitesse réele du vent, Bull. Moskovskogo Inst. Kosmicheskoi Fiziki (Bull. Moscow Inst. Space Phys.) 1, 196–214.Google Scholar
  25. Sabinin, G. Kh.: 1937, Dependence of the Anemometer Readings on the Flow Structure, Zhurnal Geofiziki (J. Geophys., Moscow) 7, 164–176 (in Russian).Google Scholar
  26. Sanuki, M.: 1952, Experiments of the Start and Stop of Windmill and Cup Anemometers With Particular Reference to their Over-Estimation Factors, Pap. Meteorol. Geophys. 3, 41–53.Google Scholar
  27. Schrenk, O.: 1929, über die Trägheitsfehler der Schalenkreuz-Anemometers bei schwankender Windstärke, Zeitsch. Techn. Phys. 10, 57–66.Google Scholar
  28. Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux, J. Atmospheric Sci. 28, 1171–1182.Google Scholar
  29. Wyngaard, J. C., Baumen, J. T., and Lynch, R. A.: 1974, ‘Cup Anemometer Dynamics’, in Flow: Its Measurement and Control in Science and Industry, vol. 1 (ed. by R. B. Dowdell), Instrument Society of America, pp. 701–708.Google Scholar
  30. Yaglom, A. M.: 1954, On Allowing for the Inertia of Meteorological Instruments in a Turbulent Atmosphere, Trudy Geofiz. Ins. Akad. Nauk SSSR (Works of Geophys. Inst., Acad. Sci. USSR), 24 (151), 112–162 (in Russian).Google Scholar
  31. Yaglom, A. M.: 1974, Data on Turbulence Characteristics in the Atmospheric Surface Layer, Izv. Acad. Sci. USSR, Atmospheric and Oceanic Physics 10, 566–586 (pp. 341–352 of the English Edition).Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • E. I. Kaganov
    • 1
  • A. M. Yaglom
    • 1
  1. 1.Institute of Atmospheric Physics, Acad. Sci. U.S.S.R.MoscowU.S.S.R.

Personalised recommendations