Human Genetics

, Volume 91, Issue 3, pp 257–260

Colocalization of the genes coding for the α3 and β3 subunits of soluble guanylyl cyclase to human chromosome 4 at q31.3–q33

  • Galicia Giuili
  • Nathalie Roechel
  • Ute Scholl
  • Marie-Geneviève Mattei
  • Georges Guellaen
Original Investigations

Abstract

We have determined the chromosomal location of the human genes coding for the α3 and β3 subunits of soluble guanylyl cyclase (GC-S). The study was performed by in situ hybridization of human metaphase spreads with two human cDNA probes, containing the coding sequences of the GC-S α3 and β3 subunits, respectively. Each probe gave a strong specific signal on chromosome 4 at the 4q31.3–4q33 region, with the maximal signal in the 4q32 band. The colocalization of both genes in 4q32 represents an interesting feature for the coordinated regulation of expression of both GC-S subunits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′∶5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207Google Scholar
  2. Blanquet V, Garreau F, Chenivesse X, Bréchet C, Turbeau C (1988) Regional mapping to 4q32. 1 by in situ hybridization of a DNA domain rearranged in human liver cancer. Hum Genet 80:274–276Google Scholar
  3. Cassard AM, Bouillaud F, Mattei MG, Hentz E, Raimbault S, Thomas M, Ricquier D (1990) Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long arm of chromosome 4. J Cell Biochem 43:255–264Google Scholar
  4. Chhajlani V, Frändberg PA, Ahlner J, Axelsson KL, Wikberg JES (1991) Heterogeneity in human soluble guanylate cyclase due to alternative splicing. FEBS Lett 290:157–158Google Scholar
  5. Chinkers M, Garbers DL (1991) Signal transduction by guanylyl cyclases. Annu Rev Biochem 60:553–575Google Scholar
  6. Craven PA, DeRubertis FR, Pratt DWC (1979) Electron spin resonance study of the role of NO catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 254:8213–8222Google Scholar
  7. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951Google Scholar
  8. Donlon TA, Muhleman D, Dietz G, Comings DE, Spak DK (1989) Localization of human trytophan oxygenase to 4q31-q32 by in situ hybridization (HGMIO). Cytogenet Cell Genet 51:992Google Scholar
  9. Fain GL, Matthews HR (1990) Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends Neurosci 13:378–384Google Scholar
  10. Fan YS, Eddy RL, Byers MG, Haley LL, Henry WM, Nowak NJ, Shows TB (1989) The human mineralocorticoid receptor gene (MLR) is located on chromosome 4 at q31.2. Cytogenet Cell Genet 52:83–84Google Scholar
  11. Genatlas (1991) INSERM printed/John Libbey Eurotext. Paris LondonGoogle Scholar
  12. Giuili G, Scholl U, Bulle F, Guellaën G (1992) Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett 304:83–88Google Scholar
  13. Graff G, Stephenson JH, Glass DB, Haddox MK, Goldberg ND (1978) Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. J Biol Chem 253:7662–7676Google Scholar
  14. Haddox MK, Stephenson JH, Moser ME, Goldberg ND (1978) Oxidative-reductive modulation of guinea pig splenic cell guanylate cyclase activity. J Biol Chem 253:3143–3152Google Scholar
  15. Harteneck C, Koesling D, Söling A, Schultz G, Böhme E (1990) Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett 272:221–223Google Scholar
  16. Harteneck C, Wedel B, Koesling D, Malkewitz J, Böhme E, Schultz G (1991) Molecular cloning and expression of a new α-subunit of the enzyme. FEBS Lett 292:217–222Google Scholar
  17. Hidaka TT, Asano T (1977) Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc Natl Acad Sci USA 74:3657–3661Google Scholar
  18. Kaupp UB (1991) The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci 14:150–157Google Scholar
  19. Koesling D, Harteneck C, Humbert P, Bosserhoff A, Frank R, Schultz G, Böhme E (1990) The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. FEBS Lett 266:128–132Google Scholar
  20. Lennard AC, Fried M (1991) The bidirectional promoter of the divergently transcribed mouse surf-1 and surf-2 genes. Mol Cell Biol 11:1281–1284Google Scholar
  21. Lowe DG, Klisak I, Sparkes RS, Mohandas T, Goeddel DV (1990) Chromosomal distribution of three members of the human natriuretic peptide receptor/guanylyl cyclase gene family. Genomics 8:304–312Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  23. Mattei MG, Philip N, Passage E, Moisan JP, Mandel JL, Mattei JF (1985) DNA probe localization at 18p113 band by in situ hybridization chromosome. Hum Genet 69:268–271Google Scholar
  24. Modi WS, Seuanez H, Jaye M, Haigier H, O'Brien SJ (1989) The human endonexin gene II (ENX2) gene is located at 4q28-q32. Cytogenet Cell Genet 52:167–169Google Scholar
  25. Moretti T, Dean M, Kozak C, O'Brien SJ, Goldman D (1991) The class III ADH gene is located in the ADH gene complex and multiple pseudogenes are dispersed throughout the genome. Am J Hum Genet 49S:351Google Scholar
  26. Morris C, Heisterkamp N, Groffen J, Williams JC, Mononen I (1992) Chromosomal localization of the human glycoasparaginase gene to 4q32-q33. Hum Genet 88:295–297Google Scholar
  27. Nakane M, Arai K, Saheki S, Kuno T, Brechler W, Murad F (1990) Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265:16841–16845Google Scholar
  28. Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9:87–119Google Scholar
  29. Tedeschi B, Porfirio B, Vernole P, Caporossi D, Dallapiccola B, Nicoletti B (1987) Common fragile sites: their prevalence in subjects with constitutional and acquired chromosomal instability. Am J Med Genet 27:471–482Google Scholar
  30. Tremblay J, Gerzer R, Hamet P (1988) Cyclic GMP in cell function. Adv Second Messenger Phosphoprotein Res 22:319–383Google Scholar
  31. Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196Google Scholar
  32. Walter U (1989) Physiological role of cGMP and cGMP-dependent rotein kinase in cardiovascular system. Rev Physiol Biochem Pharmacol 113:41–88Google Scholar
  33. Yuen PSR, Potter LR, Garbers DL (1990) A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry 29:10872–10878Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Galicia Giuili
    • 1
  • Nathalie Roechel
    • 2
  • Ute Scholl
    • 1
  • Marie-Geneviève Mattei
    • 2
  • Georges Guellaen
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM), U-99, Hôpital Henri MondorCréteilFrance
  2. 2.Institut National de la Santé et de la Recherche Médicale (INSERM), U-242, Hôpital des Enfants de la TimoneMarseille Cedex 5France

Personalised recommendations