Cell and Tissue Research

, Volume 243, Issue 3, pp 545–559 | Cite as

Light and electron-microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: Evidence for processing of the secretory material

  • Estéban M. Rodríguez
  • Hernán Herrera
  • Bruno Peruzzo
  • Sara Rodríguez
  • Silvia Hein
  • Andreas Oksche


The subcommissural organ (SCO) of the rat was investigated by use of histochemical and immunocytochemical methods at the light and electron-microscopic levels. Consecutive thin methacrylate sections were stained with the pseudoisocyanin (Psi), immunoperoxidase (IMC; employing an antiserum against Reissner's fiber, AFRU), periodic acid-Schiff (PAS) and periodic acid-silver methenamine (SM) techniques, and reacted with six types of lectins. Psi, SM, concanavalin A (Con A) and IMC were also used for double and triple sequential staining of the same section. Increasing dilutions of AFRU (from 1∶1000 to 1∶200 000) were used for immunostaining of serial paraffin sections. In addition, ultrastructural localization of (i) Con A-binding sites and (ii) immunoreactive secretory material was performed. Some of these procedures were also applied to the ophidian and canine SCO.

Con A-positive, Psi-positive and immunoreactive materials coexisted within the same cisternae of the rough endoplasmic reticulum. The Golgi apparatus lacked Con A-positive and immunoreactive substances. Apical secretory granules and secreted material lying on the surface of the SCO showed (i) the highest affinity for AFRU, but were (ii) Con A-negative, and (iii) wheat-germ agglutinin-, PAS and SM-positive. Reissner's fiber displayed a low affinity for AFRU.

It is suggested that the SCO secretes N-linked glycoproteins, the carbohydrate and protein moeities of which undergo (i) a maturation process before being released, and (ii) some kind of modification(s) after their release into the ventricle. The perivascular secretory cells of the dog SCO might secrete a material different from that secreted by the ependymal cells.

Key words

Subcommissural organ Glycoproteins Secretory process Immunocytochemistry Lectin histochemistry Rat Vertebrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alroy J, Orgad U, Ucci AA, Pereira MEA (1984) Identification of glycoprotein storage disease by lectins: A new diagnostic method. J Histochem Cytochem 32:1280–1284Google Scholar
  2. Bargmann W, Schiebler TH (1952) Histologische und cytochemische Untersuchungen am Subcommissuralorgan von Säugern. Z Zellforsch 37:583–596Google Scholar
  3. Castel M, Hochman J (1976) Ultrastructural immunohistochemical localization of vasopressin in the hypothalamic-neurohypophysial system of three murids. Cell Tissue Res 174:69–81Google Scholar
  4. Diederen JHB (1970) The subcommissural organ of Rana temporaria L. A cytological, cytochemical, cytoenzymological and electronmicroscopical study. Z Zellforsch 111:379–403Google Scholar
  5. Fischer J, Klein PJ, Vierbuchen M, Skutta B, Uhlenbruck G, Fischer R (1984) Characterization of glycoconjugates of human gastrointestinal mucosa by lectins. J Histochem Cytochem 32:681–689Google Scholar
  6. Geleff S, Böck P (1984) Pancreatic duct glands. II. Lectin binding affinities of ductular epithelium, ductular glands, and Brunner glands. Histochemistry 80:3138Google Scholar
  7. Glabe CG, Hanover JT, Lennarz WJ (1980) Glycosylation of ovalbumin nascent chains: the spatial relationship between translation and glycosylation. J Biol Chem 255:9236–9242Google Scholar
  8. Goldstein U, Mayes CE (1978) The lectins: Carbohydrate binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340Google Scholar
  9. Goldstein U, Reichert CHM, Misaki A (1974) Interaction of concanavalin A with model substrates. Ann NY Acad Sci 234:283–295Google Scholar
  10. Hickman S, Theodorakis JL, Greco JM, Brown PH (1984) Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi α1,2-mannosidase activity. J Cell Biol 98:407–416Google Scholar
  11. Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Ann Rev Biochem 50:555–583Google Scholar
  12. Hunt LA (1979) Biosynthesis and maturation of cellular membrane glycoproteins. J Supramol Struct 12:209–226Google Scholar
  13. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:49AGoogle Scholar
  14. Krstić R (1973) Ultrastrukturelle Lokalisation von Mukosubstanzen der Zellhülle im Subcommissuralorgan der Ratte. Z Zellforsch 139:237–252Google Scholar
  15. Li Chen I, Lu KS, Lin HS (1973) Electron microscopic and cytochemical studies of the mouse subcommissural organ. Z Zellforsch 139:217–236Google Scholar
  16. Lösecke W, Naumann W, Sterba G (1984) Preparation and discharge of secretion in the subcommissural organ of the rat. Cell Tissue Res 235:201–206Google Scholar
  17. Mazzi V (1952) Caratteri secretori nelle cellule dell'organo sottocommissurale dei vertebrati inferiori. Arch Zool Ital 37:445–464Google Scholar
  18. Meiniel R, Meiniel A (1985) Analysis of the secretions of the subcommissural organs of several vertebrate species by use of fluorescent lectins. Cell Tissue Res 239:359–364Google Scholar
  19. Møllgard K (1972) Histochemical investigations on the human foetal subcommissural organ. I. Carbohydrates and mucosubstances, proteins and nucleoproteins, esterase, acid and alkaline phosphatase. Histochemie 32:31–48Google Scholar
  20. Montreuil J (1980) Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem 37:157–221Google Scholar
  21. Naumann W (1968) Histochemische Untersuchungen am Subcommissuralorgan und am Reissnerschen Faden von Lampetra planeri (Bloch). Z Zellforsch 87:571–591Google Scholar
  22. Oksche A (1954) Über die Art und Bedeutung sekretorischer Zelltätigkeit in der Zirbel und im Subkommissuralorgan. Verh Anat Ges (Jena) 52:88–96Google Scholar
  23. Oksche A (1956) Funktionelle histologische Untersuchungen über die Organe des Zwischenhirndaches der Chordaten. Anat Anz 102:404–419Google Scholar
  24. Oksche A (1962) Histologische, histochemische und experimentelle Studien am Subkommissuralorgan von Anuren (mit Hinweisen auf den Epiphysenkomplex). Z Zellforsch 57:240–326Google Scholar
  25. Oksche A (1969) The subcommissural organ. J Neuro-Visc Relat [Suppl] 9:111–139Google Scholar
  26. Pearse AGE (1980) Histochemistry. Theoretical and applied. London J and A Churchill LtdGoogle Scholar
  27. Pino RM (1984) Ultrastructural localization of lectin receptors on the surface of the rat retinal pigment epithelium. Decreased sensitivity of the avidin-biotin method due to cell surface charge. J Histochem Cytochem 32:862–868Google Scholar
  28. Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31:840–842Google Scholar
  29. Podell SB, Vacquier VD (1984) Wheat germ agglutinin blocks the acrosome reaction in Strongylocentrotus purpuratus sperm by binding a 210,000-mol-wt membrane protein. J Cell Biol 99:1598–1604Google Scholar
  30. Rambourg A (1967) An improved silver methenamine technique for the detection of periodic acid-reactive complex carbohydrates with the electron microscope. J Histochem Cytochem 15:409–412Google Scholar
  31. Rodriguez EM (1970) Ependymal specializations. II. Ultrastructural aspects of the apical secretion of the toad subcommissural organ. Z Zellforsch 111: 15–31Google Scholar
  32. Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984a) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441Google Scholar
  33. Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984b) Spatial and structural interrelationships between secretory cells of the subcommissural organ and blood vessels. An immunocytochemical study. Cell Tissue Res 237:443–449Google Scholar
  34. Rodriguez EM, Yulis R, Peruzzo B, Alvial G, Andrade R (1984c) Standardization of various applications of methacrylate embedding and silver methenamine for light and electron microscopy immunocytochemistry. Histochemistry 81:253–263Google Scholar
  35. Rodriguez EM, Peruzzo B, Yulis R (1984d) Immunocytochemical evidence of the processing of neurohypophyseal peptides. Proc XV Meet Lat Amer Soc Physiol Sci R105Google Scholar
  36. Roth J (1978) The lectins: Molecular probes in cell biology and membrane research. Exp Pathol (Suppl) 3:1–180Google Scholar
  37. Stanka P, Schwink A, Wetzstein R (1964) Elektronenmikroskopische Untersuchungen des Subcommissuralorgans der Ratte. Z Zellforsch 63:277–301Google Scholar
  38. Staneloni RJ, Leloir LF (1982) The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins. CRC Crit-ical Review in Biochemistry 12:289–326Google Scholar
  39. Sterba G, Weiss J (1967) Beiträge zur Hydrencephalokrinie: I. Hypothalamische Hydrencephalokrinie der Bachforelle (Salmo trutta fario). J Hirnforsch 9:359–371Google Scholar
  40. Sterba G, Wolf G (1969) Vorkommen und Funktion der Sialinsäure im Reissnerschen Faden. Histochemie 17:57–63Google Scholar
  41. Sterba G, Kießig Chr, Naumann W, Petter H, Kleim I (1982) The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res 226:427–439Google Scholar
  42. Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig brain: I. The classical hypothalamo-neurohypophyseal system. Cell Tissue Res 197:367–384Google Scholar
  43. Sternberger LA, Hardy PH, Jr Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333Google Scholar
  44. Stutinsky F (1950) Colloïde, corps de Herring et substance Gomori-positive de la neurohypophyse. CR Soc Biol (Paris) 144:1357–1360Google Scholar
  45. Wakahara M (1974) An ultrastructural study of the subcommissural organ cells of the African clawed toad, Xenopus laevis. Cell Tissue Res 152:239–252Google Scholar
  46. Wingstrand KG (1953) Neurosecretion and antidiuretic activity in chick embryos with remarks on the subcommissural organ. Ark Zool (Stockh) 6:41–67Google Scholar
  47. Winzler RJ (1973) The chemistry of glycoproteins. In: Hormonal Proteins and Peptides. Ed Ch H Li, vol 1, pp 1–15Google Scholar
  48. Wislocki GB, Leduc EH (1952) The cytology and histochemistry of the subcommissural organ and Reissner's fiber in the rodents. J Comp Neurol 97:515–544Google Scholar
  49. Zilberstein A, Snider MD, Porter M, Lodish NF (1980) Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell 21:417–427Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Estéban M. Rodríguez
    • 1
    • 2
  • Hernán Herrera
    • 1
    • 2
  • Bruno Peruzzo
    • 1
    • 2
  • Sara Rodríguez
    • 1
    • 2
  • Silvia Hein
    • 1
    • 2
  • Andreas Oksche
    • 1
    • 2
  1. 1.Instituto de Histología y Patología, Universidad Austral de ChileValdiviaChile
  2. 2.Department of Anatomy and CytobiologyJustus Liebig University of GiessenGiessenFederal Republic of Germany

Personalised recommendations