Journal of Molecular Medicine

, Volume 74, Issue 8, pp 463–469 | Cite as

Analysis of autoantibodies to plasminogen in the serum of patients with rheumatoid arthritis

  • M. Gonzalez-Gronow
  • D. M. Grigg
  • S. V. Pizzo
  • M. Cuchacovich
Original Article


Sera from patients with rheumatoid arthritis containing high titers of anti-streptokinase antibodies were found to contain anti-plasminogen antibodies of the IgG and IgA classes. High titers of anti-plasminogen autoantibodies of the IgA class were also found in sera from patients with systemic lupus erythematosus and Sjögren syndrome. Studies of the immune response to thrombolytic therapy with streptokinase in patients with no prior history of autoimmune disease suggest a strong correlation between streptokinase administration and the appearance of autoantibodies to plasminogen of the IgA class. The IgA anti-plasminogen autoantibody is specific for an epitope in a region of plasminogen which binds streptokinase and the IgG autoantibody reacts with an epitope in the C-terminal region corresponding to the catalytic domain of the plasminogen zymogen. Our findings suggest a different origin for the two classes of antiplasminogen immunoglobulins in rheumatoid arthritis patients. Since plasminogen binding to rheumatoid synovial fibroblasts is enhanced, the high titers of both classes of anti-plasminogen autoantibodies may add to the localization and perpetuation of the immune response. We suggest that plasminogen may be a target of the immune response in autoimmune disease.

Key words

Plasminogen Autoimmunity Rheumatoid arthritis Systemic lupus erythematosus Sjögren's syndrome 



6-Aminohexanoic acid


Enzyme-linked immunosorbent assays


Lactate dehydrogenase isoenzyme M






Rheumatoid arthritis


Sodium dodecyl sulfate


Systemic lupus erythematosus




Sjögren syndrome


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silver RM, Zvaifler NJ (1985) Immunologic considerations. In: Utsinger PP, Zvaifler NJ, Ehrlich GE (eds) Rheumatoid arthritis pathogenesis. Lippincott, Philadelphia, pp 71–89Google Scholar
  2. 2.
    Gardner DL (1986) Pathology of rheumatoid arthritis. In: Scott JT (ed). Copeman's textbook of rheumatic diseases. Churchill Livingstone, Edinburgh, pp 604–652Google Scholar
  3. 3.
    Mochan E, Uhl J (1984) Elevations in synovial fluid plasminogen activator in patients with rheumatoid arthritis. J Rheum 11:123–128Google Scholar
  4. 4.
    Mochan E, Keler T (1984) Plasmin degradation of cartilage proteoglycan. Biochim Biophys Acta 800:312–315Google Scholar
  5. 5.
    Gonzalez-Gronow M, Gawdi G, Pizzo SV (1993) Plasminogen activation stimulates an increase in intracellular calcium in human synovial fibroblasts. J Biol Chem 268:10791–10795Google Scholar
  6. 6.
    Gonzalez-Gronow M, Enghild JJ, Pizzo SV (1993) Streptokinase and human fibronectin share a common epitope: implications for regulation of fibrinolysis and rheumatoid arthritis. Biochim Biophys 1180:283–288Google Scholar
  7. 7.
    Podlasek SJ, McPherson RA (1989) Streptokinase binds to lactate dehydrogenase subunit-M, which shares an epitope with plasminogen. Clin Chem 35:69–73Google Scholar
  8. 8.
    Deutsch D, Mertz ET (1970) Plasminogen: purification from human plasma by affinity chromatography. Science 170:1095–1096Google Scholar
  9. 9.
    Castellino FJ, Sodetz JM, Brockway WW, Siefring GE (1977) Streptokinase. Methods Enzymol 45:244–257Google Scholar
  10. 10.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger Jr TA, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG (1988) The American Rheumatism Association of 1987. Revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324PubMedGoogle Scholar
  11. 11.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria are the classification of systemic lupus erythematosus (SLE) Arthritis Rheum 25:1271–1277PubMedGoogle Scholar
  12. 12.
    Urowitz MB, Gladman DD, Tozman ECS, Goldsmith CH (1984) The lupus activity criteria count (LACC) J Rheumatol 11:783–787Google Scholar
  13. 13.
    Roque-Barreira MC, Campos-Neto A (1985) Jacalin: an IgAbinding lectin. J Immunol 134:1740–1743Google Scholar
  14. 14.
    Goding JW (1978) Use of staphylococcal protein A as an immunological reagent. J Immunol Methods 20:241–253Google Scholar
  15. 15.
    Laemli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  16. 16.
    Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 176:4350–4354Google Scholar
  17. 17.
    Gonzalez-Gronow M, Violand B, Castellino FJ (1977) Purification and some properties of the Gluand Lys-human plasmin heavy chains. J Biol Chem 252:2175–2180Google Scholar
  18. 18.
    Harpel PC, Sullivan R, Chang TS (1989) Binding and activation of plasminogen on immobilized immunoglobulin G. J Biol Chem 264:616–624Google Scholar
  19. 19.
    Castellino FJ, Bajaj SP (1977) Activation of human plasminogen by equimolar levels of streptokinase. J Biol Chem 252:492–498Google Scholar
  20. 20.
    Collazos J, Echevarria MJ, Ayarza G, DeMiguel J (1992) Case report and review of group C streptococcal arthritis. Clin Infect Dis 15:744–746Google Scholar
  21. 21.
    Wilder RL, Case JP, Crofford LJ, Kumkumian GK, Lafyatis R, Remmers EF, Sano H, Sternberg EM, Yocum DE (1991) Endothelial cells and the pathogenesis of rheumatoid arthritis in Lewis rats. J Cell Biochem 45:162–166Google Scholar
  22. 22.
    Wilder RL, Allen JB, Hansen C (1987) Thymus-dependent and independent regulation of IA antigen expression in situ by cells in the synovium of rats with streptococcal cell wall-induced arthritis. J Clin Invest 79:1160–1171Google Scholar
  23. 23.
    Tillet WS, Edwards LB, Gamer RL (1974) Fibrinolytic activity of hemolytic streptococci. The development of resistance to fibrinolysis following acute hemolytic streptococcus infections. J Clin Invest 13:67–78Google Scholar
  24. 24.
    Kosow DF (1975) Kinetic mechanism of the activation of human plasminogen by streptokinase. Biochemistry 14:4459–4465Google Scholar
  25. 25.
    Humphries JE, Hall SW, VandenBerg SR, Gonias SL (1991) Streptokinase-plasmin complex binds to plasminogen receptors on rat hepatocytes and human endothelium. Fibrinolysis 5:171–176Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Gonzalez-Gronow
    • 1
  • D. M. Grigg
    • 1
  • S. V. Pizzo
    • 1
  • M. Cuchacovich
    • 2
  1. 1.Department of PathologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Medicine, Rheumatology SectionClinical Hospital-University of ChileSantiagoChile

Personalised recommendations