Human Genetics

, Volume 90, Issue 5, pp 483–488

Prenatal sex determination from maternal peripheral blood using the polymerase chain reaction

  • Y. -M. Dennis Lo
  • Pushpa Patel
  • Colin N. Baigent
  • Michael D. G. Gillmer
  • Paul Chamberlain
  • Maurizio Travi
  • Maurizio Sampietro
  • James S. Wainscoat
  • Kenneth A. Fleming
Original Investigations

Abstract

We have investigated the use of a nested polymerase chain reaction assay for the detection of a fetal-specific Y-chromosomal sequence (DYS14) from DNA extracted from unsorted maternal peripheral blood. Serial dilutions of male DNA into female cord blood DNA indicated that the assay could detect an equivalent of a single male cell in 300000 female cells. The assay exhibited absolute specificity for male DNA with no amplification from a DNA panel obtained from 10 female cord blood samples. When used on DNA extracted from unsorted peripheral blood from a series of pregnant women, the predictive values of a positive test for a male fetus were 86%, 67% and 87% in the first, second and third trimesters, respectively. We have also demonstrated that retesting the samples allows the detection of a proportion of male-bearing pregnancies with a high degree of accuracy, in that all 15 women who gave positive signals in two consecutive amplifications had male fetuses. We have also applied the test at 8 weeks post-partum to eight women who had previously delivered male babies; no Y-specific signal could be detected in any of them, suggesting that most women have cleared their circulation of fetal cells by 8 weeks after parturition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arinami T, Hamada H, Hamaguchi H, Iwasaki H (1991) Fetal cells in maternal blood: frequencies measured by the polymerase chain reaction (PCR) and in situ hybridisation. Am J Hum Genet 49 [Suppl]:210Google Scholar
  2. Arnemann J, Epplen JT, Cooke HJ, Sauermann U, Engel W, Schmidtke J (1987) A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucleic Acids Res 15:8713–8724Google Scholar
  3. Bianchi DW, Flint AF, Pizzimenti MF, Knoll JHM, Latt SA (1990) Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 87:3279–3283Google Scholar
  4. Bianchi DW, Stewart JE, Garber MF, Lucotte G, Flint AF (1991) Possible effect of gestational age on the detection of fetal nucleated erythrocytes in maternal blood. Prenat Diag 11:523–528Google Scholar
  5. Camaschella C, Alfarano A, Gottardi E, Travi M, Primignani P, Cappio FC, Saglio G (1990) Prenatal diagnosis of fetal hemoglobin Lepore-Boston disease on maternal peripheral blood. Blood 75:2102–2106Google Scholar
  6. Chou Q, Russell M, Birch DE, Raymond J, Bloch W (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 20:1717–1723Google Scholar
  7. Editorial (1990) Is it a boy? Lancet 336:87–88Google Scholar
  8. Hook EB (1990) Prenatal genetic diagnosis from maternal peripheral blood. Lancet 336:746Google Scholar
  9. Kao SM, Tang GC, Hsieh TT, Young KC, Wang HC, Pao CC (1992) Analysis of peripheral blood of pregnant women for the presence of fetal Y chromosome-specific ZFY gene deoxyribonucleic acid sequences. Am J Obstet Gynecol 166:1013–1019Google Scholar
  10. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238CrossRefPubMedGoogle Scholar
  11. Lo YMD, Mehal WZ, Fleming KA (1988) False-positive results and the polymerase chain reaction. Lancet II:679Google Scholar
  12. Lo YMD, Patel P, Wainscoat JS, Sampietro M, Gillmer MDG, Fleming KA (1989) Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet II:1363–1365Google Scholar
  13. Lo YMD, Patel P, Sampietro M, Gillmer MDG, Fleming KA, Wainscoat JS (1990) Detection of single-copy fetal DNA sequence from maternal blood. Lancet 335:1463–1464Google Scholar
  14. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  15. Merel P, Saura R, Comeau F, Grison O, Vezon G (1991) Detection of fetal DNA in maternal blood by PCR may also lead to false negative results. Am J Hum Genet 49 [Suppl]: 198Google Scholar
  16. Mueller UW, Hawes CS, Wright AE, Petropoulos A, De Boni E, Firgaira FA, Morley AA, Turner DR, Jones WR (1990) Isolation of fetal trophoblast cells from peripheral blood of pregnant women. Lancet 336:197–200Google Scholar
  17. Nakagome Y, Nagafuchi S, Nakahori Y (1990) Prenatal sex determination. Lancet 335:291Google Scholar
  18. Price JO, Elias S, Wachtel SS, Klinger K, Dockter M, Tharapel A, Shulman LP, Phillips OP, Meyers CM, Shook D, Simpson JL (1991) Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am J Obstet Gynecol 165:1731–1737Google Scholar
  19. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354PubMedGoogle Scholar
  20. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerasc. Science 239:487–491PubMedGoogle Scholar
  21. Wachtel SS, Elias S, Price J, Wachtel G, Phillips O, Shulman L, Meyers C, Simpson JL, Dockter M (1991) Fetal cells in the maternal circulation: isolation by multiparameter flow cytometry and confirmation by polymerase chain reaction. Hum Reprod 6:1466–1469Google Scholar
  22. Walknowska J, Conte FA, Grumbach MM (1969) Practical and theoretical implication of fetal/maternal lymphocyte transfer. Lancet I:1119–1122Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Y. -M. Dennis Lo
    • 1
  • Pushpa Patel
    • 2
  • Colin N. Baigent
    • 3
  • Michael D. G. Gillmer
    • 4
  • Paul Chamberlain
    • 4
  • Maurizio Travi
    • 5
  • Maurizio Sampietro
    • 6
  • James S. Wainscoat
    • 2
  • Kenneth A. Fleming
    • 1
  1. 1.Nuffield Department of Pathology and BacteriologyJohn Radcliffe HospitalOxfordUK
  2. 2.Department of HaematologyJohn Radcliffe HospitalOxfordUK
  3. 3.Clinical Trial Service UnitHarkness Building, Radcliffe InfirmaryOxfordUK
  4. 4.Maternity DepartmentJohn Radcliffe HospitalOxfordUK
  5. 5.Istituti Clinici di PerfezionamentoMilanItaly
  6. 6.Istituto di Medicina Interna e Fisiopatologia Medica, Universita di MilanoMilanItaly

Personalised recommendations