Experiments in Fluids

, Volume 8, Issue 6, pp 301–311

Turbulent flow visualization by interferometric integral imaging and computed tomography

  • D. W. Watt
  • C. M. Vest
Originals

Abstract

An experimental system using integral interferometric imaging and computer tomography for visualizing the structure of a turbulent, vertical helium jet is described. Integral images and tomographic integral data were obtained using a pulsed phase-shifted interferometer. The integral images revealed a sinuous overall jet structure and large-scale buckling motions in the far-field. Tomographic reconstruction of jet cross-sections at numerous axial locations were made for three turbulent jets at two different Reynols numbers, 2,800 and 4,300. Tomographic images revealed unmixed ambient fluid far inside the jet boundary and a bimodal concentration distribution. Image interpretation and experimental errors are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, K. E.; Faris, G. W.; Byer, R. L. 1984: Experimental optical fan beam tomography. Appl. Opt. 23, 2678–2685Google Scholar
  2. Birch, A. D.; Brown, D. R.; Dodson, M. G.; Thomas, J. R. 1978: The turbulent concentration field of a methane jet. J. Fluid. Mech. 88, 431–455Google Scholar
  3. Breuckmann, B.; Thieme, W. 1985: Computer-aided analysis of holographic interferograms using the phase shift method. Appl. Opt. 24, 2145–2149Google Scholar
  4. Brooks, R. A.; Glover, G. H.; Talbert, A. J.; Eisner, R. L.; DiBianca, F. A. 1979: Aliasing: a source of streaks in computed tomograms. J. Comput. Assist. Tomogr. 3, 511–518Google Scholar
  5. Brown, G. L.; Roshko, A. 1974: On density effects and large structures of turbulent mixing layers. J. Fluid Mech. 64, 475–816Google Scholar
  6. Bruun, H. H. 1977: A time-domain analysis of the large-scale flow structure in a circular jet. Part 1. Moderate Reynolds number. J. Fluid Mech. 88, 641–655Google Scholar
  7. Byer, R. L.; Shepp, L. A. 1979: Two-dimensional remote air-pollution monitoring via tomography. Opt. Lett. 4, 75–77Google Scholar
  8. Chen, C.-J.; Rodi, W. 1980: A review of experimental data of vertical turbulent jets and plumes. Oxford: Pergamon PressGoogle Scholar
  9. Cheng, Y.-Y.; Wyant, J. C. 1985: Phase shifter calibration in phase-shifting interferometry. Appl. Opt. 24, 3049–3052Google Scholar
  10. Chevray, R. C.; Tutu, K. K. 1978: Intermittency and preferential transport of heat in a round jet. J. Fluid Mech. 88, 133–154Google Scholar
  11. Crow, S. C.; Champagne, F. H. 1971: Orderly structures in jet turbulence. J. Fluid Mech. 48, 541–591Google Scholar
  12. Dändliker, R.; Thalmann, R. 1985: Heterodyne and quasi-heterodyne holographic interferometry. Opt. Eng. 24, 824–831Google Scholar
  13. Dändliker, R.; Moram, E.; Mottier, F. M. 1976: Two-reference beam holographic interferometry. J. Opt. Soc. Am. 60, 23–30Google Scholar
  14. Dändliker, R.; Thalmann, R.; Willemin, J.-F. 1982: Fringe interpolation by two reference beam holographic interferometry. Opt. Commun. 42, 23–29Google Scholar
  15. Dahm, W. J. A. 1984: Experiments on entrainment, mixing and chemical reactions in turbulent jets at large Schmidt number. Ph.D. Thesis, California Institute of Technology, Pasadena/CAGoogle Scholar
  16. Deans, S. R. 1983: The Radon transform and some of its applications. New York: WileyGoogle Scholar
  17. Dimotakis, P. E.; Miake-Lye, R. C.; Papantoniou, D. A. 1983: Structure and dynamics of round, turbulent jets. Phys. Fluids 26, 3185–3192Google Scholar
  18. Faris, G. W.; Byer, R. L. 1986: Quantitative optical tomographic imaging of a supersonic jet. Opt. Lett. 9, 413–415Google Scholar
  19. Hariharan, P. 1985: Quasi-heterodyne holographic interferometry. Opt. Eng. 24, 632–638Google Scholar
  20. Hertz, H. M. 1985: Experimental determination of 2-d flame temperature fields by interferometric tomography. Opt. Commun. 54, 131–136Google Scholar
  21. Hiller, B.; Hanson, R. K. 1988: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33–48Google Scholar
  22. Kittelson, J. K.; Yu, Y. H. 1985: Transonic rotor flow-measurement technique using holographic interferometry. J. Am. Helicopter. Soc. 30, 3–9Google Scholar
  23. Kreiss, T. 1986: Digital holographic interference-phase measurement using the fourier transform method. J. Opt. Soc. Am. A 3, 897–895Google Scholar
  24. Leith, E. N.; Upatnieks, J.; Haines, K. A. 1965: Microscopy by wavefront reconstruction. J. Opt. Soc. Am. 55, 981–986Google Scholar
  25. Meier, R. W. 1965: Magnification and third-order aberrations in holography. J. Opt. Soc. Am. 55, 987–992Google Scholar
  26. Pitts, W. M.; Kashiwagi, T. 1985: The application of Rayleigh-light scattering to the study of turbulent mixing. J. Fluid Mech. 141, 391–429Google Scholar
  27. Radulovich, P. T. 1977: Holographic interferometry of three-dimensional temperature or density fields. Ph.D. Thesis, Department of Mechanical Engineering, The University of Michigan, Ann Arbor/MIGoogle Scholar
  28. Santoro, R. J.; Semerjian, H. G.; Emmerman, P. J.; Goulard, R. 1981: Optical tomography for flow field diagnostics. Int. J. Heat Mass Transfer 24, 1139–1150Google Scholar
  29. Snyder, R. 1988: Instantaneous three-dimensional optical tomographic measurements of species concentration in a co-flowing jet. Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University, Stanford/CAGoogle Scholar
  30. Snyder, R.; Hesselink, L. 1988: Measurement of mixing fluid flows with optical tomography, Opt. Lett. 13, 87–89Google Scholar
  31. Stuck, B. W. 1977: A new proposal for estimating the spatial concentration of certain types of air pollutants. J. Opt. Soc. Am. 67, 668–678Google Scholar
  32. Sweeney, D. W.; Vest, C. M. 1973: Reconstruction of three-dimensional refractive index fields from multidirectional interferometric data. Appl. Opt. 12, 2649–2664Google Scholar
  33. Tso, J.; Kovasznay, L. S. G.; Hussain, A. K. M. F. 1981: Search for large-scale coherent structures in the nearly self-preserving region of turbulent axisymmetric jet. J. Fluids Eng. 103, 503–508Google Scholar
  34. Vest, C. M. 1979: Holographic interferometry. New York: WileyGoogle Scholar
  35. Watt, D. W.; Vest, C. M. 1987: Digital interferometry for flow visualization. Exp. Fluids 5, 401–408Google Scholar
  36. Watt, D. W.; Vest, C. M. 1989: Consistent iterative convolution: A coupled approach to tomographic reconstruction. J. Opt. Soc. A. 6, 44–51Google Scholar
  37. White, F. M. 1974: Viscous flows. New York: McGraw-HillGoogle Scholar
  38. Wygnanski, I.; Fiedler, H. 1969: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612Google Scholar
  39. Yip, B.; Long, M. B. 1986: Instantaneous planar measurements of the complete three-dimensional scalar gradient in a turbulent jet. Opt. Lett. 11Google Scholar
  40. Yule, A. J. 1978: Large scale structure in the mixing layers of a round jet. J. Fluid Mech. 89, 413–420Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. W. Watt
    • 1
  • C. M. Vest
    • 2
  1. 1.Dept. of Mechanical EngineeringUniversity of New HampshireDurhamUSA
  2. 2.Dept. of Mechanical EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations