Cell and Tissue Research

, Volume 252, Issue 3, pp 639–653

Postnatal development of the tubular lamina propria and the intertubular tissue in the bovine testis

  • Karl-Heinz Wrobel
  • Stefanie Dostal
  • Margit Schimmel
Article

Summary

The postnatal development of intertubular cells and vessels and of the tubular lamina propria was studied in three locations of perfusion-fixed bovine testes from 31 animals ranging from 4 to 78 weeks. The postnatal morphological differentiation of the testis is not uniform, regional differences have to be considered. The intertubular cell population is composed of mesenchyme-like cells, fibrocytes, Leydig cells, peritubular cells and mononuclear cells. In 4 and 8-week-old testes mesenchyme-like cells are the dominating element. These pluripotent cells proliferate by frequent mitoses and are the precursors of Leydig cells, contractile peritubular cells and fibrocytes. Morphologically differentiated Leydig cells are encountered throughout the entire period of postnatal development. In 4-week-old testes degenerating fetal and newly formed postnatal Leydig cells are seen in juxtaposition to each other. From the 8th week on, only postnatal Leydig cells are present. Between 16 and 30 weeks large-scale degeneration of prepuberal Leydig cells is observed. The Leydig cells that survive this degenerative phase constitute the long-lasting adult population. 20–30% (numerically) of all intertubular cells at all ages are free mononuclear cells. These are found as lymphocytes, plasma cells, monocytes, macrophages and light intercalated cells (LIC). The latter are monocyte-derived, Leydig cell-associated typical cells of the bovine testis. The differentiation of the two main components of the tubular lamina propria, (i) basal lamina and (ii) peritubular cell sheath, seems to be effected rather independent from each other and also from hormonal signals important for the development of the germinal cells. The laminated basal lamina reaches nearly 3 μm at 16 weeks and is later on continuously reduced. At 25 weeks the peritubular cells have transformed into contractile myofibroblasts. At this period the germinal epithelium is still in a prepuberal state.

Key words

Testis Postnatal development Leydig cells Tubular lamina propria Mononuclear cells Bull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Raouf M (1960) The postnatal development of the reproductive organs in bulls with special reference to puberty. Acta Endocrinol (Kbh) [Suppl] 49Google Scholar
  2. Amann RP (1962) Reproductive capacity of dairy bulls. III. The effect of ejaculation frequency, unilateral vasectomy, and age on spermatogenesis. Am J Anat 110:49–67Google Scholar
  3. Aoki A, Fawcett DW (1975) Impermeability of Sertoli cell junctions to prolonged exposure to peroxidase. Andrologia 7:63–76Google Scholar
  4. Attal J, Courot M (1963) Développement testiculaire et établissement de la spermatogenèse chez le Taureau. Ann Biol Anim Biochim Biophys 3:219–241Google Scholar
  5. Bascom KF (1923) The interstitial cells of the gonads of cattle with special reference to their embryonic development and significance. Am J Anat 31:223–259Google Scholar
  6. Berliner DL, Nabors CJ, Dougherty TF (1964) The role of hepatic and adrenal reticuloendothelial cells in steroid biotransformation. J Reticuloendothel Soc 1:1–17Google Scholar
  7. Bressler RS, Ross MH (1969) Pituitary involvement in testicular peritubular cell maturation. Anat Rec 163:158–159Google Scholar
  8. Bustos-Obregón E, Courot M (1974) Ultrastructure of the lamina propria in the ovine seminiferous tubule. Development and some endocrine considerations. Cell Tissue Res 150:481–492Google Scholar
  9. Curtis SK, Amann RP (1981) Testicular development and establishment of spermatogenesis in Holstein bulls. J Anim Sci 53:1645–1657Google Scholar
  10. Dierichs R, Wrobel KH (1973) Licht- und elektronenmikroskopische Untersuchungen an den peritubulären Zellen des Schweinehodens während der postnatalen Entwicklung. Z Anat Entwickl Gesch 143:49–64Google Scholar
  11. Fawcett DW, Neaves WB, Flores MN (1973) Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500–532Google Scholar
  12. Forssmann WG, Ito S, Weihe E, Aoki A, Dym M, Fawcett DW (1977) An improved perfusion fixation method for the testis. Anat Rec 188:307–314Google Scholar
  13. Fossland RC, Schultze AB (1961) A histological study of the postnatal development of the bovine testis. Res Bull Univ Nebraska Agric Exper Stat 199:3–16Google Scholar
  14. Hooker CW (1944) The postnatal history and functions of the interstitial cells of the testis of the bull. Am J Anat 74:1–38Google Scholar
  15. Hovatta O (1972) Effect of androgens and antiandrogens on the development of the myoid cells of the rat seminiferous tubules (organ culture). Z Zellforsch 131:299–308Google Scholar
  16. Hullinger RL, Wensing CJG (1985) Testicular organogenesis in the fetal calf: interstitial endocrine (Leydig) cell development. Acta Anat 121:99–109Google Scholar
  17. Humphrey JD, Ladds PW (1975) A quantitative histological study of changes in the bovine testis and epididymis associated with age. Res Vet Sci 19:135–141Google Scholar
  18. Kormano M, Hovatta O (1972) Contractility and histochemistry of the myoid cell layer of the rat seminiferous tubules during postnatal development. Z Anat Entwickl Gesch 137:239–248Google Scholar
  19. Leeson CR, Forman DE (1981) Postnatal development and differentiation of contractile cells within the rabbit testis. J Anat 132:491–511Google Scholar
  20. Milewich L, Chen GT, Lyons C, Tucker TF, Uhr JW, MacDonald PC (1982) Metabolism of androstenedione by guinea-pig peritoneal macrophages: synthesis of testosterone and 5α-reduced metabolites. J Steroid Biochem 17:61–65Google Scholar
  21. Miller SC (1982) Localization of plutonium-241 in the testis. An interspecies comparison using light and electron microscope autoradiography. Int J Radiat Biol 41:633–643Google Scholar
  22. Nistal M, Paniagua R, Regadera J, Santamaria L, Amat P (1986) A quantitative morphological study of human Leydig cells from birth to adulthood. Cell Tissue Res 246:229–236Google Scholar
  23. Reynolds EG (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  24. Ross MH (1967) The fine structure and development of the peritubular contractile cell component in the seminiferous tubules of the mouse. Am J Anat 121:523–558Google Scholar
  25. Russell JJ, Lindenbaum A (1979) One-year study of nonuniformly distributed plutonium in mouse testis as related to spermatogonial irradiation. Health Phys 36:153–157Google Scholar
  26. Scheubeck M, Wrobel KH (1984) Eine einfache transportable Apparatur zur Durchführung von Perfusionsfixierungen. Mikroskopie 41:108–111Google Scholar
  27. Schrag D (1983) Licht- und elektronenmikroskopische Untersuchungen zur fetalen Differenzierung der männlichen Keimdrüse des Rindes. Inaug Diss LMU MünchenGoogle Scholar
  28. Schwark HJ, Lühmann P, Carl WD (1972) Untersuchungen an Hoden von Jungbullen. 1. Mitt.: Die Entwicklung der Hoden und deren Beziehung zur Altersund Körpermasseentwicklung und zu einigen Spermamerkmalen. Monatsh Veterinärmed 27:172–176Google Scholar
  29. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedGoogle Scholar
  30. Ströbel H (1967) Histometrische Untersuchungen am Hodeninterstitium von Stieren mit Störungen der Spermatogenèse und der Libido. Inaug Diss LMU MünchenGoogle Scholar
  31. Strübing Ch (1986) Morphologische Veränderungen in nicht hormonsubstituierten Organkulturen von Hodenparenchym adulter männlicher Rinder. Dipl Arb (Biol) RegensburgGoogle Scholar
  32. Swierstra EE (1966) Structural composition of shorthorn bull testes and daily spermatozoa production as determined by quantitative testicular histology. Can J Anim Sci 46:107–119Google Scholar
  33. Vernon-Roberts B (1972) The Macrophage. University Press, CambridgeGoogle Scholar
  34. Wrobel KH, El Etreby MF (1971) Enzymhistotopochemie an der männlichen Keimdrüse des Rindes während ihrer fetalen und postnatalen Entwicklung. Histochemie 26:160–179Google Scholar
  35. Wrobel KH, Schilling E, Dierichs R (1973) Enzymhistochemische Untersuchungen an den Leydigzellen des Schweines während der postnatalen Ontogenese. Histochemie 36:321–333Google Scholar
  36. Wrobel KH, Sinowatz F, Kugler P (1978) Zur funktionellen Morphologie des Rete testis, der Tubuli recti und der Terminalsegmente der Tubuli seminiferi des geschlechtsreifen Rindes. Zentralbl Veterinärmed (C) Anat Histol Embryol 7:320–335Google Scholar
  37. Wrobel KH, Mademann R, Sinowatz F (1979) The lamina propria of the bovine seminiferous tubule. Cell Tissue Res 202:357–377Google Scholar
  38. Wrobel KH, Sinowatz F, Mademann R (1981) Intertubular topography in the bovine testis. Cell Tissue Res 217:289–310Google Scholar
  39. Wrobel KH, Schilling E, Zwack M (1986) Postnatal development of the connexion between tubulus seminiferus and tubulus rectus in the bovine testis. Cell Tissue Res 246:387–400Google Scholar
  40. Yee JB, Hutson JC (1983) Testicular macrophages: isolation, characterization and hormonal responsiveness. Biol Reprod 29:1319–1326Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Karl-Heinz Wrobel
    • 1
  • Stefanie Dostal
    • 1
  • Margit Schimmel
    • 1
  1. 1.Institut für Anatomie der Universität RegensburgRegensburgGermany
  2. 2.Institut für AnatomieUniversität RegensburgRegensburgGermany

Personalised recommendations