Human Genetics

, Volume 92, Issue 5, pp 437–440

Molecular genetics of GM2-gangliosidosis AB variant: a novel mutation and expression in BHK cells

  • Maria Schröder
  • Doris Schnabel
  • Robert Hurwitz
  • Elisabeth Young
  • Kunihiko Suzuki
  • Konrad Sandhoff
Original Investigations

Abstract

The GM2 activator is a hexosaminidase A-specific glycolipid-binding protein required for the lysosomal degradation of ganglioside GM2. Genetic deficiency of GM2 activator leads to a neurological disorder, an atypical form of Tay-Sachs disease (GM2 gangliosidosis variant AB). Here, we describe a G506 to C transversion (Arg169 to Pro) in the mRNA of an infantile patient suffering from GM2-gangliosidosis variant AB. Using the polymerase chain reaction amplification and direct-sequencing technique, we found the patient to be homozygous for the mutation, whereas the parents were, as expected, heterozygous. BHK cells transfected with a construct of mutant cDNA gave no GM2 activator protein detectable by the Western blotting technique, whereas those transfected by a wild-type cDNA construct showed a significant level of human GM2 activator protein. The substitution of proline for the normal Arg169 therefore appears to result in premature degradation of the mutant GM2 activator, either during the post-translational processing steps or after reaching the lysosome. The basis for the phenotype of GM2 gangliosidosis variant AB may therefore be either inactivation of the physiological activator function by the point mutation or instability of the mutant protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlet P, Morelle C, Ausmeier M, Fitzek M, Hauser H (1988) Vectors for efficient expression in mammalian fibroblastoid, myeloid and lymphoid cells via transfection or infection. Gene 68:213–219Google Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Green Publishing Associates and Wiley Interscience, New YorkGoogle Scholar
  3. Conzelmann E (1989) The role of activator proteins in glycolipid degradation and storage diseases. In: Azzi A, Drahota A, Papa S (eds) Molecular basis of membrane-associated diseases. Springer, Berlin Heidelberg New York, pp 379–393Google Scholar
  4. Fürst W, Sandhoff K (1992) Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta 1126:1–16Google Scholar
  5. Klima H, Tanaka A, Schnabel D, Nakano T, Schröder M, Suzuki K, Sandhoff K (1991) Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett 289:260–264Google Scholar
  6. Klima H, Klein A, Echten G van, Schwarzmann G, Suzuki K, Sandhoff K (1993) Overexpression of a functionally active human GM2-activator protein in Escherichia coli. Biochem J 292:571–576Google Scholar
  7. Laemmli UK (1979) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  8. Ledeen RW, Wu G (1992) Ganglioside function in the neuron. Trends Genet 4:174Google Scholar
  9. Leinekugel P, Michel S, Conzelmann E, Sandhoff K (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88:513–523Google Scholar
  10. O'Brien JS, Kishimoto Y (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J 5:301–308Google Scholar
  11. Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K (1989) The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1807–1839Google Scholar
  12. Schröder M, Klima H, Nakano T, Kwon H, Quintern LE, Gärtner S, Suzuki K, Sandhoff K (1989) Isolation of a cDNA encoding the human GM2 activator protein. FEBS Lett 251:197–200Google Scholar
  13. Schröder M, Schnabel D, Suzuki K, Sandhoff K (1991) A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB. FEBS Lett 290:1–3Google Scholar
  14. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354PubMedGoogle Scholar
  15. Vara JA, Portela A, Ortin J, Jimenez A (1986) Expression in mammalian cells of a gene from Streptomyces alboniger conferring puromycin resistance. Nucleic Acids Res 14:4617–4624Google Scholar
  16. Xie B, Wang W, Mahuran DJ (1992) A Cys 138 to Arg substitution in the GM2 activator protein is associated with the AB variant form of GM2 gangliosidoses. Am J Hum Genet 50:1046–1052Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Maria Schröder
    • 1
  • Doris Schnabel
    • 1
  • Robert Hurwitz
    • 1
  • Elisabeth Young
    • 2
  • Kunihiko Suzuki
    • 3
  • Konrad Sandhoff
    • 1
  1. 1.Institut für Organische Chemie und BiochemieBonnGermany
  2. 2.Division of Biochemistry and GeneticsInstitute of Child Health and Hospitals for Sick ChildrenLondonUK
  3. 3.Brain and Development Research CenterUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations