Advertisement

Molecular and Cellular Biochemistry

, Volume 51, Issue 1, pp 5–32 | Cite as

Kinetics of subtilisin and thiolsubtilisin

  • M. Philipp
  • M. L. Bender
Review

Summary

Subtilisin is a bacterial serine protease with a broad specificity in the S1 subsite. It has been very extensively studied using a variety of kinetic and physical techniques. A chemical derivative, thiolsubtilisin, has been subjected to similar studies in order to analyze the effects of the OH to SH conversion on enzyme activity.

The native structure of thiosubtilisin is indicated by a variety of physical techniques. Oligopeptides bind nearly equally well to both enzymes, and a peptide chloromethylketone is much more reactive to thiolsubtilisin than to subtilisin. Both enzymes have a similar level of activity towards activated nonspecific amides and esters. However, thiolsubtilisin is inactive towards highly specific peptide amides and esters. Thiolsubtilisin also does not show good binding to boronic and arsonic acids. The observation that these transition state analog inhibitors bind poorly to thiolsubtilisin while other compounds bind nearly equally well to both enzymes suggests that thiolsubtilisin may not be able to stabilize the transition state during acylation by specific substrates.

Keywords

Amide Transition State Physical Technique Serine Protease Oligopeptides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Ac X

N-acetyl derivative of peptide X

Ac SEt

thioethyl acetate

Ala(1-NPH)

beta (1-naphthyl)alanine

Ala(2-NPH)

beta (2-naphthyl)alanine

Ala(6-Qui)

beta (6-quinolyl)alanine

Boc X

N-tertiary-butyloxycarbonyl derivative of peptide X

Bz X

N-Benzoyl derivative of peptide X

Bzc

2-benzylcarbazate

X CH2Cl

chloromethylketone analog of amino acid X

X CHO

aldehyde analog of amino acid X

Cys(Bzl)

S-benzyl derivative of cysteine

Cys(DPM)

S-diphenylmethyl derivative of cysteine

DMAC X

4-dimethylaminocinnamic acid derivative of X

DOPA

3,4-dihydroxyphenylalanine

EDTA

ethylenediamine tetraacetic acid

F3Ac (N-Me)pNA

N-methyl, para-nitroanilide derivative of trifluoroacetic acid

IND

indole ring system

Lim

pH-independent limiting value

Mec

2-methylcarbazate

McCN

acetonitrile

α-Naphth

alpha naphthyl ring system

X NH2

amide of peptide X

X OET

ethyl ester of peptide X

X OMe

methyl ester of peptide X

X OpNP

nitrophenyl ester of compound X

P1, P2, etc.

residue designation in an oligopeptide (32)

Ph

phenyl ring

Phe(4-NHAc)

4-acetamido derivative of phenylalanine

Phe(NO2)

4-nitrophenylalanine

X pNA

para-nitroanilide of compound X

2-PrOH

2-propanol

X SBz

thiobenzyl ester of peptide X

SHSTL

thiolsubtilisin

X-SHSTL

thiolsubtilisin acylated by X

SSI

streptomyces subtilisin inhibitor

STL

subtilisin

Tos X

N-tosyl derivative of peptide X

Trp(CHO)

N-formyl derivative of tryptophan

Trp(NCps)

2-(2-nitro-4-carboxyphenylsulfenyl)-tryptophan

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welker, N. E. and Campbell, L. L., 1967. J. Bacteriol. 94:1124–1130.Google Scholar
  2. 2.
    Ottesen, M. and Svendsen, I., 1970. In: Methods in Enzymology (Lorand, L. & Perlman, G., eds.), Vol. XIX, pp. 199–215, Academic Press, New York.Google Scholar
  3. 3.
    Markland, F. S. and Smith, E., 1971. The Enzymes, 3rd ed. (Boyer, P. D., ed.), Vol. 3, pp. 561–608, Academic Press, New York.Google Scholar
  4. 4.
    Svendsen, I., 1976. Carlsberg Chem. Comm. 41:237–291.Google Scholar
  5. 5.
    Olaitan, S. A., DeLange, R. J. and Smith, E. L., 1968. J. Biol. Chem. 243:5296–5301.Google Scholar
  6. 6.
    Robertus, J. D., Alden, R. A. and Kraut, J., 1971. Biochem. Biophys. Res. Comm. 42:334–339.Google Scholar
  7. 7.
    Drenth, J., Hol, W. G., Jansonius, J. W. and Koekoek, R., 1972. Eur. J. Biochem. 26:177–181.Google Scholar
  8. 8.
    Smith, E. L., Markland, F. S., Kasper, C. B., DeLange, R. J., Landon, M. and Evans, W. H., 1966. J. Biol. Chem. 241:5974–5976.Google Scholar
  9. 9.
    Wright, C. S., 1972. J. Mol. Biol. 67:151–163.Google Scholar
  10. 10.
    Fuke, I., Matsubara, H. and Okunuki, K., 1959. J. Biochem. 46:1513–1521.Google Scholar
  11. 11.
    Gounaris, A. and Ottesen, M., 1965. Compt. Rend. Trav. Lab. Carlsberg 35:37–62.Google Scholar
  12. 12.
    Ikai, A., 1976. Biochim. Biophys. Acta 445:182–193.Google Scholar
  13. 13.
    Polgár, L. and Sajgó, M., 1981. Biochim. Biophys. Acta 667:351–354.Google Scholar
  14. 14.
    Philipp, M., Tsai, I.-H. and Bender, M. L., 1979. Biochem. 18:3769–3773.Google Scholar
  15. 15.
    Tsai, I.-H. and Bender, M. L., 1979. Biochem. 18:3764–3768.Google Scholar
  16. 16.
    Hagihara, B., Matsubara, H., Nakai, M. and Okunuki, K., 1958. J. Biochem. 45:185–194.Google Scholar
  17. 17.
    Ottesen, M. and Spector, A., 1960. Compt. Rend. Trav. Lab. Carlsberg 32:63–74.Google Scholar
  18. 18.
    Güntelberg, A. and Ottesen, M., 1954. Compt. Rend. Trav. Lab. Carlsberg 29:36–48.Google Scholar
  19. 19.
    Graae, J., 1954. Acta Chem. Scand. 8:356–357.Google Scholar
  20. 20.
    Sierra, G., 1964. Can. J. Microbiol. 10:926–928.Google Scholar
  21. 21.
    Bender, M. L., Berue-Canton, M. L., Blakely, R. L., Brubacher, L. J., Feder, J., Gunter, C. R., Kezdy, F. J., Kilheffer, J. V., Marshall, T. H., Miller, C. G., Roeske, R. W. & Stoops, J. K., 1966. J. Am. Chem. Soc. 88:5890–5913.Google Scholar
  22. 22.
    Pattabiraman, T. N. and Lawson, W. B., 1972. Biochem. J. 126:645–657.Google Scholar
  23. 23.
    Schwert, G. W. and Takenaka, Y., 1955. Biochim. Biophys. Acta 16:570–575.Google Scholar
  24. 24.
    Zerner, B. and Bender, M. L., 1964. J. Amer. Chem. Soc. 86:3669–3674.Google Scholar
  25. 25.
    Hummel, B. C. W., 1959. Can. J. Biochem. Physiol. 37:1393–1399.Google Scholar
  26. 26.
    Yakusheva, L. D., Lyublinskaya, L. A. and Stepanov, V. M., 1979. Biokhim. (Engl. ed.) 44:215–223, and Yakusheva, L. D., Ljublinsskaya, L. A. and Stepanov, V. M., 1978. Bioorg. Khim. 4: 1660–1664.Google Scholar
  27. 27.
    Fujiwara, K., Osue, K. and Tsuru, D., 1975. J. Biochem. 77:739–743.Google Scholar
  28. 28.
    Kost, O. A., Kazanskaya, N. F. and Rudenskaya, G. N., 1980. Bioorg. Khim. 6:1813–1816.Google Scholar
  29. 29.
    Mäkinen, K. K., 1972. Int. J. Prot. Res. 4:21–28.Google Scholar
  30. 30.
    Farmer, D. A. and Hageman, J. H., 1975. J. Biol. Chem. 250:7366–7371.Google Scholar
  31. 31.
    Ottesen, M. and Svendsen, I., 1971. Compt. Rend. Trav. Lab. Carlsberg 38:369–383.Google Scholar
  32. 32.
    Schechter, I. and Berger, A., 1967. Biochem. Biophys. Res. Comm. 27:157–162.Google Scholar
  33. 33.
    Philipp, M. and Bender, M. L., 1974. FEBS Lett. 42:282–284.Google Scholar
  34. 34.
    Philipp, M. and Bender, M. L., 1973. Nature N. B. 241:44.Google Scholar
  35. 35.
    Eigen, M. and Hammes, G. G., 1963. Adv. Enzymol. 25:1–38.Google Scholar
  36. 36.
    Hirohara, H., Philipp, M. and Bender, M. L., 1977. Biochem. 16:1573–1580.Google Scholar
  37. 37.
    Philipp, M., 1971. Doctoral Dissertation, Northwestern University, Evanston, IL.Google Scholar
  38. 38.
    Matta, M. S., Greene, C. M., Stein, R. L. and Henderson, P. A., 1976. J. Biol. Chem. 251:1006–1008.Google Scholar
  39. 39.
    Williams, A. and Woolford, G., 1972. J. Chem. Soc. Perkin Transactions II:272–275.Google Scholar
  40. 40.
    Polgár, L. and Fejes, J., 1979. Eur. J. Biochem. 102:531–536.Google Scholar
  41. 41.
    Matta, M. S. and Staley, D. D., 1974. J. Biol. Chem. 249:732–737.Google Scholar
  42. 42.
    Gertler, A., 1971. Eur. J. Biochem. 23: 36–40.Google Scholar
  43. 43.
    Ando, T. and Suzuki, K., 1966. Biochim. Biophys. Acta 121: 427–429.Google Scholar
  44. 44.
    Ottesen, M., Johansen, J. T. and Svendsen, I., 1970. Structure-Function Relationships of Proteolytic Enzymes. Desnuelle, P., Neurath, H. and Ottesen, M., eds. pp. 175–186, Munksgaard, Copenhagen.Google Scholar
  45. 45.
    Morihara, K., Oka, T. and Tsuzuki, H., 1969. Biochem. Biophys. Res. Comm. 35: 210–214.Google Scholar
  46. 46.
    Morihara, K., Tsuzuki, H. and Oka, T., 1971. Biochem. Biophys. Res. Comm. 42: 1000–1006.Google Scholar
  47. 47.
    Morihara, K., Oka, T. and Tsuzuki, H., 1971. Arch. Biochem. Biophys. 146: 297–305.Google Scholar
  48. 48.
    Morihara, K. and Tsuzuki, H., 1969. Arch. Biochem. Biophys. 129: 620–634.Google Scholar
  49. 49.
    Stauffer, C. E. and Etson, D., 1969. J. Biol. Chem. 244: 5333–5338.Google Scholar
  50. 50.
    Kost, O. A., Kazanskaya, N. F. and Katkova, V. A., 1981. Bioorg. Khim. 7: 858–866.Google Scholar
  51. 51.
    Glazer, A. N., 1967. J. Biol. Chem. 242: 433–436.Google Scholar
  52. 52.
    Inagami, T., York, S. and Patchornik, A., 1965. J. Am. Chem. Sec. 87: 126–127.Google Scholar
  53. 53.
    Parker, L. and Wang, J., 1968. J. Biol. Chem. 243: 3729–3734.Google Scholar
  54. 54.
    Philipp, M., Pollack, R. and Bender, M. L., 1973. Proc. Nat. Acad. Sci. 70: 517–520.Google Scholar
  55. 55.
    Uehara, Y., Tonomura, B. and Hiromi, K., 1978. J. Biochem. 84: 1195–1202.Google Scholar
  56. 56.
    Bosshard, H. and Berger, A., 1974. Biochem. 13: 266–277.Google Scholar
  57. 57.
    Bosshard, H., 1973. FEBS Lett. 30: 105–110.Google Scholar
  58. 58.
    Johnson, C. H. and Knowles, J., 1966. Biochem. J. 101: 56–62.Google Scholar
  59. 59.
    Smallcombe, S. H., Ault, B. and Richards, J. H., 1972. J. Amer. Chem. Soc. 94: 4585.Google Scholar
  60. 60.
    Robertus, J. D., Kraut, J., Alden, R. A. and Birktoft, J. J., 1972. Biochem. 11: 4293–4303.Google Scholar
  61. 61.
    Wright, C. S., Alden, R. A. and Kraut, J., 1972. J. Mol. Biol. 66: 283–289.Google Scholar
  62. 62.
    Wright, C. S., 1972. J. Mol. Biol. 67: 151–163.Google Scholar
  63. 63.
    Glazer, A. N., 1968. Proc. Nat. Acad. Sci. 59: 996–1002.Google Scholar
  64. 64.
    Glazer, A. N., 1968. J. Biol. Chem. 243: 3693–3701.Google Scholar
  65. 65.
    Philipp, M. and Bender, M. L., 1971. Proc. Nat. Acad. Sci. 68: 478–480.Google Scholar
  66. 66.
    Nakatani, H., Morita, T. and Hiromi, K., 1978. Biochim. Biophys. Acta 525: 423–428.Google Scholar
  67. 67.
    Nakatani, H. and Hiromi, K., 1978. Biochim. Biophys. Acta 524: 413–417.Google Scholar
  68. 68.
    Koehler, K. A., Jackson, R. C. and Lienhard, G. E., 1972. J. Org. Chem. 37: 2232–2237.Google Scholar
  69. 69.
    Nakatani, H., Uehara, Y. and Hiromi, K., 1975. J. Biochem. 78: 611–616.Google Scholar
  70. 70.
    Hanai, K., 1977. J. Biochem. 81: 1273–1283.Google Scholar
  71. 71.
    Hanai, K., 1976. J. Biochem. 80: 491–495.Google Scholar
  72. 72.
    Nakatani, H., Hanai, K., Uehara, Y. and Hiromi, K., 1975. J. Biochem. 77: 905–908.Google Scholar
  73. 73.
    Hanai, K., 1976. J. Biochem. 79: 107–116.Google Scholar
  74. 74.
    Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T. and Kraut, J., 1975. J. Biol. Chem. 250: 7120–7126.Google Scholar
  75. 75.
    Koehler, K. and Lienhard, G., 1971. Biochem. 10: 2477–2483.Google Scholar
  76. 76.
    Rawn, J. and Lienhard, G., 1974. Biochem. 13: 3124–3130.Google Scholar
  77. 77.
    Robillard, G. and Shulman, R. G., 1974. J. Mol. Biol. 86: 541–558.Google Scholar
  78. 78.
    Jordan, F. and Polgar, L., 1981. Biochem. 20: 6366–6370.Google Scholar
  79. 79.
    Tsai, I.-H., 1977. Doctoral Dissertation, Northwestern University, Evanston, IL.Google Scholar
  80. 80.
    Ikai, A., 1976. Biochim. Biophys. Acta 445: 182–193.Google Scholar
  81. 81.
    Lowe, G. and Nurse, D., 1977. J. Chem. Soc., Chem. Comm. 815–817.Google Scholar
  82. 82.
    Chen, R., Gorenstein, D. G., Kennedy, W. P., Lowe, G., Nurse, D. and Schultz, R. M., 1979. Biochem. 18: 921–926, and references therein.Google Scholar
  83. 83.
    Poulos, T., Alden, R. A., Freer, S. T., Birktoft, J. J. and Kraut, J., 1976. J. Biol. Chem. 251: 1097–1103.Google Scholar
  84. 84.
    Inouye, K., Tonomura, B., Hiromi, K., Sato, S. and Murao, S., 1977. J. Biochem. 82: 961–967.Google Scholar
  85. 85.
    Fujiwara, K., Inouye, K., Tonomura, B., Murao, S. and Tsuru, D., 1977. J. Biochem. 82: 125–130.Google Scholar
  86. 86.
    Fujiwara, K. and Tsuru, D., 1978. Biochim. Biophys. Acta 522: 195–204.Google Scholar
  87. 87.
    Hirono, S., Nakamura, K. T., Iitaka, Y. and Mitsui, Y., 1979. J. Mol. Biol. 131: 855–869.Google Scholar
  88. 88.
    Mitsui, Y., Satow, Y., Watanabe, Y., Hirono, S. and Iitaka, Y., 1979. Nature 277: 447–452.Google Scholar
  89. 89.
    Sugino, H., Nakagawa, S. and Kakinuma, A., 1978. J. Biol. Chem. 253: 1538–1545.Google Scholar
  90. 90.
    Uyeda, M., Suzuki, K. and Shibata, M., 1976. Agr. Biol. Chem. 40: 1479–1483.Google Scholar
  91. 91.
    Feeney, R., 1971. Proc. 1st Int. Res. Conf. Proteinase Inhibitors Fritz, H. and Tschesche, H., eds. Walter de Gruyter, Berlin, p. 189–195.Google Scholar
  92. 92.
    Osuga, D. T., Bigler, J. C., Uy, R., Sjöberg, L. and Feeney, R. E., 1974. Comp. Biochem. Physiol. B 48: 519–533.Google Scholar
  93. 93.
    Ryan, C., 1966. Biochem. 5: 1592–1596.Google Scholar
  94. 94.
    Kaiser, K. P. and Belitz, Z., 1973. Z. Lebensm. Unters. Forsch. 151: 18–22.Google Scholar
  95. 95.
    Kiyohara, T., Fujii, M., Iwasaki, T. and Yoshikawa, M., 1973. J. Biochem. 74: 675–682.Google Scholar
  96. 96.
    Iwasaki, T., Kiyohara, T. and Yoshikawa, M., 1973. J. Biochem. 73: 1039–1048.Google Scholar
  97. 97.
    Iwasaki, T., Kiyohara, T. and Yoshikawa, M., 1973. J. Biochem. 74: 335–340.Google Scholar
  98. 98.
    Eddy, J. L., Derr, J. E. and Hass, G. M., 1980. Phytochem. 19: 757–761.Google Scholar
  99. 99.
    Davis, J., Zahnley, J. and Donovan, J., 1969. Biochem. 8: 2044–2053.Google Scholar
  100. 100.
    Haynes, R. and Feeney, R., 1967. J. Biol. Chem. 242: 5378–5385.Google Scholar
  101. 101.
    Tomimatsu, Y., Clary, J. J. and Bartulovich, J. J., 1966. Arch. Biochem. Biophys. 115: 536–544.Google Scholar
  102. 102.
    Norden, D. A., 1972. Comp. Biochem. Physiol. B 42: 569–576.Google Scholar
  103. 103.
    Wunderer, G., Kummer, K. and Fritz, H., 1972. Z. Physiol. Chem. 353: 1646–1650.Google Scholar
  104. 104.
    Fritz, H., Jaumann, E., Meister, R., Pasquay, P., Hochstrasser, K. and Fink, E., 1971. Proc. 1st Int. Res. Conf. Proteinase Inhibitors. Fritz, H., Tschesche, H., eds. Walter de Gruyter, Berlin, p. 257–270.Google Scholar
  105. 105.
    Illichman, K. & Werle, E., 1974. Bayer Symposium V: Proteinase Inhibitors. Fritz, H., Tschesche, H., Greene, L. J. and Truscheit, E., eds. Springer Verlag, Berlin, p. 282–283.Google Scholar
  106. 106.
    Peanaski, R. J. and Abu-Erreish, G. M., 1971. Proc. 1st Int. Res. Conf. Proteinase Inhibitors. Fritz, H. and Tschesche, H., eds. Walter de Gruyter, Berlin, pp. 282–293.Google Scholar
  107. 107.
    Seemüller, U., Eulitz, M., Fritz, H. and Strobl A., 1980. Z. Physiol. Chem. 361: 1841–1846.Google Scholar
  108. 108.
    Kato, I., Tominaga, N. and Kihara, H., 1972. Symp. on Prot. Structure, Maebashi, Japan, 1972, cited by Laskowski, Jr., M., Kato, L, Leary, T. R., Schroede, J. and Sealock, R. W., 1974 Bayer Symposium V, Proteinase Inhibitors. Fritz, H., Tschesche, H., Greene, L. J. and Truscheit, E., eds. Springer Verlag, Berlin, p. 597–611.Google Scholar
  109. 109.
    Laskowski, M. Jr,m Kato, I., Leary, T. R., Schroede, J. and Sealock, R. W., 1974. Bayer Symposium V, Proteinase Inhibitors. Fritz, H., Tschesche, H., Greene, L. J. and Truscheit, E., eds. Springer Verlag, Berlin.Google Scholar
  110. 110.
    Mikola, J. and Suolinna, E.-M., 1971. Arch. Biochem. Biophys. 144: 566–575.Google Scholar
  111. 111.
    Seidl, D. S., Abreu, H. and Jaffe, W. G., 1978. FEBS Lett. 92: 245–250.Google Scholar
  112. 112.
    Kassell, B. and Williams, M. J., 1976. Handbook of Biochemistry and Molecular Biology, 3rd ed., Proteins Vol. 2 Fasman, G. D., ed. CRC Press, Cleveland, Ohio, pp. 583–648.Google Scholar
  113. 113.
    Ottesen, M. and Schellman, C. G., 1957. Compt. Rend. Trav. Lab. Carlsberg 30: 157–166.Google Scholar
  114. 114.
    Huber, R., 1972. Protein-Protein Interactions, Jaenicke, R. and Helmreich, E. eds. Springer Verlag, Berlin.Google Scholar
  115. 115.
    Matsubara, H. and Nishimura, S., 1958. J. Biochem. 45: 503–510.Google Scholar
  116. 116.
    Polgar, L. and Bender, M. L., 1966. J. Amer. Chem. Soc. 88: 3153–3154.Google Scholar
  117. 117.
    Neet, K. and Koshland, D., 1966. Proc. Nat. Acad. Sci. 56: 1606–1611.Google Scholar
  118. 118.
    Strumeyer, D. H., White, W. and Koshland, D., 1963. Proc. Nat. Acad. Sci. 50: 931–935.Google Scholar
  119. 119.
    Shaw, E. and Ruscica, J., 1968. J. Biol. Chem. 243: 6312–6313.Google Scholar
  120. 120.
    Morihara, K. and Oka, T., 1970. Arch. Biochem. Biophys. 138: 526–531.Google Scholar
  121. 121.
    Svendsen, I., 1967. Compt. Rend. Trav. Lab. Carlsberg 36: 235–246.Google Scholar
  122. 122.
    Brown, W. E. and Weld, F., 1973. Biochem. 12: 835–840.Google Scholar
  123. 123.
    Robertus, J. D., Alden, R. A., Birktoft, J. J., Kraut, J., Powers, J. C. and Wilcox, P. E., 1972. Biochem. 11: 2439–2449.Google Scholar
  124. 124.
    Stefanovsky, Y. and Westheimer, F. H., 1973. Proc. Nat. Acad. Sci. 70: 1132–1136.Google Scholar
  125. 125.
    Zioudrou, C., Wilchek, M., Patchornik, A., 1965. Biochem. 4: 1811–1822.Google Scholar
  126. 126.
    Uemitsu, N., Sugiyama, M., Matsumiya, H., 1972. Biochim. Biophys. Acta 258: 562–565.Google Scholar
  127. 127.
    Polgar, L. and Bender, M. L., 1967. Biochem. 6: 610–620.Google Scholar
  128. 128.
    Polgar, L. and Bender, M. L., 1969. Biochem. 8: 136–141.Google Scholar
  129. 129.
    Polgar, L., 1976. Acta Biophys. Biochim. Acad. Sci. Hung. 11: 77–82.Google Scholar
  130. 130.
    Brocklehurst, K. and Malthouse, J. P. G., 1981. Biochem. J. 193: 819–823.Google Scholar
  131. 131.
    Neet, K., Nanci, A. and Koshland Jr., D. E., 1968. J. Biol. Chem. 243: 6392–6401.Google Scholar
  132. 132.
    Halasz, P. and Polgar, L., 1976. Eur. J. Biochem. 71: 563–569.Google Scholar
  133. 133.
    Halasz, P. and Polgar, L., 1977. Eur. J. Biochem. 79: 491–494.Google Scholar
  134. 134.
    Polgar, L., Halasz, P. and Moravcsik, E., 1973. Eur. J. Biochem. 39: 421–429.Google Scholar
  135. 135.
    Husain, S. S. and Lowe, G., 1970. Biochem. J. 117: 333–340.Google Scholar
  136. 136.
    Husain, S. S. and Lowe, G., 1970. Biochem. J. 117: 341–346.Google Scholar
  137. 137.
    Polgar, L., 1972. Acta Biochim. Biophys. Acad. Sci. Hung. 7: 319–334.Google Scholar
  138. 138.
    Bender, M. L., Kezdy, F., Wedler, F., 1967. J. Chem. Ed. 44: 84–88.Google Scholar
  139. 139.
    Ottesen, M. and Ralston, G., 1972. Compt. Rend. Trav. Lab. Carlsberg 38: 457–479.Google Scholar
  140. 140.
    Polgar, L. and Bender, M. L., 1969. Proc. Nat. Acad. Sci. 64: 1335–1342.Google Scholar
  141. 141.
    Hinkle, P. and Kirsch, J., 1970. Biochem. 9: 4633–4643.Google Scholar
  142. 142.
    Polgar, L., 1973. Biochim. Biophys. Acta 321: 639–642.Google Scholar
  143. 143.
    Dupaix, A., Bechet, J.-J. and Roucous, C., 1973. Biochem. 12: 2559–2565.Google Scholar
  144. 144.
    Amshey, J., Jindal, S. and Bender, M. L., 1975. Arch. Biochem. Biophys. 169: 1–6.Google Scholar
  145. 145.
    Bender, M. L. and Philipp, M., 1973. J. Am. Chem. Sec. 95: 1665–1666.Google Scholar
  146. 146.
    Smallcombe, S. H., Ault, B. and Richards, J. H., 1972. J. Amer. Chem. Soc. 94: 4585–4590.Google Scholar
  147. 147.
    Wright, C. S., Alden, R. A. and Kraut, J., 1972. J. Mol. Biol. 66: 283–289.Google Scholar
  148. 148.
    Bender, M. L. and Nakamura, K., 1962. J. Am. Chem. Soc. 84: 2577–2582.Google Scholar
  149. 149.
    Caplow, M. and Jencks, W. P., 1962. Biochem. 1: 883–893.Google Scholar
  150. 150.
    Wedler, F. C., Killian, F. L. and Bender, M. L., 1970. Proc. Nat. Acad. Sci. 65: 1120–1126.Google Scholar
  151. 151.
    Breaux, E. J. and Bender, M. L., 1976. Biochem. Biophys. Res. Comm. 70: 235–240.Google Scholar
  152. 152.
    Kezdy, F. J. and Bender, M. L., 1964. J. Am. Chem. Soc. 86: 938–940.Google Scholar
  153. 153.
    Bender, M. L. and Kezdy, F., 1965. Ann. Rev. Biochem. 34: 49–76.Google Scholar
  154. 154.
    Cruickshank, W. H. and Kaplan, H., 1975. Biochem. J. 147: 411–416.Google Scholar
  155. 155.
    Cane, W. P. and Wetlaufer, P., 1966. Abst. Am. Chem. Soc. Natl. Meeting 152: c110.Google Scholar
  156. 156.
    Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T. and Kraut, J., 1977. J. Biol. Chem. 252: 8875–8883.Google Scholar
  157. 157.
    Jencks, W. P. and Carriuolo, J., 1960. J. Am. Chem. Soc. 82: 1778–1786.Google Scholar
  158. 158.
    Pauling, L., 1960. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, New York, p. 224.Google Scholar
  159. 159.
    Morihara, K., Oka, T. and Tsuzuki, H., 1974. Arch. Biochem. Biophys. 165: 72–79.Google Scholar
  160. 160.
    Morihara, K. and Oka, T., 1977. Arch. Biochem. Biophys. 178: 188–194.Google Scholar
  161. 161.
    Karasaki, Y. and Ohno, M., 1978. J. Biochem. 84: 531–538.Google Scholar
  162. 162.
    Morihara, K., Oka, T. and Tsuzuki, H., 1970. Arch. Biochem. Biophys. 138: 515–525.Google Scholar
  163. 163.
    Pattabiraman, T. N. and Lawson, W. B., 1972. Biochem. J. 126: 659–665.Google Scholar
  164. 164.
    Dugas, H., 1969. Can. J. Biochem. 47: 985–987.Google Scholar
  165. 165.
    Miller, C., 1968. Doctoral Dissertation, Northwestern University, Evanston, Illinois.Google Scholar
  166. 166.
    Keizer, J. and Bernhard, S., 1966. Biochem. 5: 4127–4136.Google Scholar
  167. 167.
    Johansen, J., Oliver, R. W. A. and Svendsen, I., 1969. Compt. Rend. Trav. Lab. Carlsberg 37: 87–105.Google Scholar
  168. 168.
    Noller, H. and Bernhard, S., 1965. Biochem. 4: 1118–1126.Google Scholar
  169. 169.
    Blackburn, W., Bilton, R. F., Crumpton, M. J. and Law, H. D., 1973. FEBS Lett. 34: 333–336.Google Scholar
  170. 170.
    Powers, J. C., Lively, M. O. and Tippett, J. T., 1977. Biochim. Biophys. Acta 480: 246–261.Google Scholar
  171. 171.
    Philipp, M. and Maripuri, S., 1981. FEBS Lett, 133: 36–38.Google Scholar
  172. 172.
    Karasaki, Y. and Ohno, M., 1979. J. Biochem. 86: 563–567.Google Scholar
  173. 173.
    Svendsen, I., 1968. Compt. Rend. Trav. Lab. Carlsberg 36: 347–363.Google Scholar
  174. 174.
    Rotanova, T. V., Vasiléva, N. V., Ginodman, L. M. and Antonov, V. K., 1978. Bioorg. Khim. 4: 694–698.Google Scholar
  175. 175.
    Powers, J. C. and Carroll, D. L., 1975. Biochem. Biophys. Res. Comm. 67: 639–644.Google Scholar
  176. 176.
    Pozsgay, M., Gaspar, R., Elödi, P. and Bajusz, S., 1977. FEBS Lett. 74: 67–70.Google Scholar
  177. 177.
    Chapman, J. D. and Hultin, H. O., 1975. Biotechnol. Bioeng. 17: 1783–1795.Google Scholar
  178. 178.
    Bosshard, H. R., 1974. Isr. J. Chem. 12: 495–504.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1983

Authors and Affiliations

  • M. Philipp
    • 1
  • M. L. Bender
    • 2
  1. 1.Dept. of Chemistry, Lehman College of the City University of New York, and Dept. of BiochemistryGraduate Center of CUNYEvanstonU.S.A.
  2. 2.Depts. of Biochemistry and ChemistryNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations