Medical Microbiology and Immunology

, Volume 180, Issue 4, pp 167–182 | Cite as

The different hemolysins of Escherichia coli

  • Lothar Beutin


Escherichia Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A, Silver RP (1983) Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 39:315–335Google Scholar
  2. Berger H, Hacker J, Juarez A, Hughes C, Goebel W (1982) Cloning of the chromosomal determinants encoding hemolysin production and mannose-resistant hemagglutination in Escherichia coli. J Bacteriol 152:1241–1247Google Scholar
  3. Beutin L (1990) Die Bedeutung und Erkennung von Escherichia coli als Krankheitserreger beim Menschen. Bundesgesundheitsblatt 33:380–386Google Scholar
  4. Beutin L, Bode L, Özel M, Stephan R (1990a) Enterohemolysin production is associated with a temperate bacteriophage in Escherichia coli serogroup O26 strains. J Bacteriol 172:6469–6475Google Scholar
  5. Beutin L, Montenegro M (1990) Enterohaemolysin and Shiga-like toxin genes in E. coli. Vet Rec 127:316Google Scholar
  6. Beutin L, Montenegro M, Ørskov I, Ørskov F, Prada J, Zimmermann S, Stephan R (1989) Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J Clin Microbiol 27:2559–2564Google Scholar
  7. Beutin L, Montenegro M, Zimmermann S, Stephan R (1986a) Characterization of hemolytic strains of Escherichia coli belonging to classical enteropathogenic O-serogroups. Zentral Bakteriol Hyg [A] 261:266–279Google Scholar
  8. Beutin L, Ørskov I, Ørskov F, Zimmermann S, Prada J, Gelderblom H, Stephan R, Whittam T (1990b) Clonal diversity and virulence factors in strains of Escherichia coli of the classical enteropathogenic O-serogroup 114. J Infect Dis 162:1329–1334Google Scholar
  9. Beutin L, Prada J, Zimmermann S, Stephan R, Ørskov I, Ørskov F (1988) Enterohemolysin, a new type of hemolysin produced by some strains of enteropathogenic E. coli (EPEC). Zentral Bakteriol Hyg [A] 267:576–588Google Scholar
  10. Bhakdi S, Tranum-Jensen J (1987) Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 107:147–223Google Scholar
  11. Bhakdi S, Tranum-Jensen J (1988) Damage to cell membranes by pore-forming bacterial cytolysins. Prog Allergy 40:1–43Google Scholar
  12. Bhakdi S, Mackman N, Nicaud JM, Holland IB (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52:63–69Google Scholar
  13. Bhakdi S, Mackman N, Menestrina G, Hugo F, Seeger W, Holland IB (1988) Mechanismus der Zellschädigung durch E. coli Hämolysin Immun Infekt 16:41–48Google Scholar
  14. Bhakdi S, Greulich S, Muhly M, Eberspächer B, Becker H, Thiele A, Hugo F (1989) Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med 169:737–754Google Scholar
  15. Bhakdi S, Muhly M, Korom S, Schmidt G (1990) Effects of Escherichia coli hemolysin on human monocytes. J Clin Invest 85:1746–1753Google Scholar
  16. Boehm DF, Welch R, Snyder I (1990) Calcium is required for the binding of Escherichia coli hemolysin to erythrocyte membranes. Infect Immun 58:1951–1958Google Scholar
  17. Boehm DF, Welch R, Snyder I (1990b) Domains of Escherichia coli hemolysin (Hly A) involved in the binding of calcium and erythrocyte membranes. Infect Immun 58:1959–1964Google Scholar
  18. Bohach GA, Snyder I (1985) Chemical and immunological analysis of the complex structure of Escherichia coli alpha-hemolysin. J Bacteriol 164:1071–1080Google Scholar
  19. Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C (1983) Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39:1300–1306PubMedGoogle Scholar
  20. Caprioli A, Falbo V, Ruggeri FM, Baldassarri L, Bisicchia R, Ippolito G, Romoli E, Donelli G (1987) Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J Clin Microbiol 25:146–149Google Scholar
  21. Caprioli A, Falbo V, Ruggeri FM, Minelli F, Ørskov I, Donelli G (1989) Relationship between cytotoxic necrotizing factor production and serotype in hemolytic E. coli. J Clin Microbiol 27:758–761Google Scholar
  22. Cavalieri SJ, Snyder IS (1982a) Effect of Escherichia coli alpha-hemolysin on human peripheral leucocyte viability in vitro. Infect Immun 36:455–461Google Scholar
  23. Cavalieri SJ, Snyder IS (1982b) Cytotoxic activity of partially purified Escherichia coli alpha hemolysin. J Med Microbiol 15:11–21Google Scholar
  24. Cavalieri SJ, Bohach GA, Snyder IS (1984) Escherichia coli α-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 48:326–343Google Scholar
  25. Cross M, Koronakis V, Stanley PLD, Hughes C (1990) Hly B-dependent secretion of hemolysin by uropathogenic Escherichia coli requires conserved sequences flanking the chromosomal hly determinant. J Bacteriol 172:1217–1224Google Scholar
  26. Czirók E (1985) Virulence factors of Escherichia coli. II. Antigens O4, O6 and O18, haemolysin production and mannose-resistant haemagglutinating capacity are closely associated. Acta Microbiol Hung 32:183–192Google Scholar
  27. Czirók E, Milch H, Madár J, Semjen G (1977). Characterization of Escherichia coli serogroups causing meningitis, sepsis and enteritis. Acta Microbiol Hung 24:115–126Google Scholar
  28. Czirók, Milch H, Csiszár K, Csik M (1986) Virulence factors of Escherichia coli. III. Correlation with Escherichia coli pathogenicity of haemolysin production, haemagglutinating capacity, antigens K1, K5 and colicinogenicity. Acta Microbiol Hung 33:69–83Google Scholar
  29. DeBoy JM, Wachsmuth K, Davis BR (1980) Hemolytic activity in enterotoxigenic and non-enterotoxigenic strains of Escherichia coli. J Clin Microbiol 12:193–198Google Scholar
  30. DeBoy JM, Wachsmuth K, Birkness K (1983). Plasmids and serotypes of hemolytic fecal Escherichia coli. Curr Microbiol 8:273–277Google Scholar
  31. Drlica K (1984) Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev 48:273–289Google Scholar
  32. Dudgeon LS, Wordley E, Bawtree F (1921) On Bacillus coli infections of the urinary tract especially in relation to hemolytic organisms. J Hyg 20:137–164Google Scholar
  33. Dudgeon LS, Wordley E, Bawtree F (1922) On Bacillus coli infections of the urinary tract especially in relation to hemolytic organisms. J Hyg 20:168–198Google Scholar
  34. Eog Ji G, O'Hanley P (1990) Epitopes of Escherichia coli alpha-hemolysin: identification of monoclonal antibodies that prevent hemolysis. Infect Immun 58:3029–3035Google Scholar
  35. Faundez G, Figueroa G, Troncoso M, Cabello FC (1988) Characterization of enteroinvasive Escherichia coli strains isolated from children with diarrhea in Chile. J Clin Microbiol 26:928–932Google Scholar
  36. Felmlee T, Pellett S, Welch RA (1985). Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105Google Scholar
  37. Gadeberg OV, Larsen SO (1988) In vitro cytotoxic effect of α-hemolytic Escherichia coli on human blood granulocytes. APMIS 96:337–341Google Scholar
  38. Gadeberg OV, Ørskov I (1984) In vitro effect of α-hemolytic Escherichia coli on human blood granulocytes. Infect Immun 45:255–260Google Scholar
  39. Gadeberg OV, Ørskov I, Rhodes JM (1983) Cytotoxic effect of an alpha-hemolytic Escherichia coli strain on human blood monocytes and granulocytes in vitro. Infect Immun 41:358–364Google Scholar
  40. Gadeberg OV, Hacker J, Ørskov I (1989) Role of α-hemolysin for in vitro phagocytosis and intracellular killing of Escherichia coli. Zentral Bakteriol Mikrobiol Hyg [A] 271:205–213Google Scholar
  41. Gaillard JL, Chero G, Mougenot JF, Deslys JP, Nezelof C, Veron M, Schmitz J (1989) Pyelonephritic Escherichia coli strains as intestinal pathogens in two newborn infants. Lancet 1:327–328Google Scholar
  42. Garcia E, Bergmans HEN, van den Bosch JF, Ørskov I, van der Zeijst BAM Gaastra W (1988) Isolation and characterization of dog uropathogenic Escherichia coli strains and their fimbriae. Antonie van Leeuwenhoek 54:149–163Google Scholar
  43. Godessart N, Munoa FJ, Regue M, Juarez A (1988) Chromosomal mutations that increase the production of plasmid-encoded haemolysin in Escherichia coli. J Gen Microbiol 134:2779–2787Google Scholar
  44. Goebel W, Schrempf H (1971) Isolation and characterization of supercoiled circular deoxyribon-ucleic acid from beta hemolytic strains of Escherichia coli. J Bacteriol 106:311–317Google Scholar
  45. Gonzalez EA, Blanco J (1985) Production of cytotoxin VT in enteropathogenic, and non-enteropathogenic Escherichia coli strains of porcine origin. FEMS Microb Lett 26:127–130Google Scholar
  46. Gonzalez-Carreró MI, Zabala JC, De la Cruz F, Ortiz JM (1985) Purification of α-hemolysin from an overproducing E. coli strain. Mol Gen Genet 199:106–110Google Scholar
  47. Gray L, Baker K, Kenny B, Mackman N, Haigh R, Holland IB (1989) A novel C-terminal signal sequence targets Escherichia coli haemolysin directly to the medium. J Cell Sci [S] 11:45–57Google Scholar
  48. Grimminger F, Walmrath D, Birkenmeyer RG, Bhakdi S, Seeger W (1990) Leukotriene and hydroxyeicosatetraenoic acid generation elicited by low doses of Escherichia coli hemolysin in rabbit lungs. Infect Immun 58:2659–2663Google Scholar
  49. Grönross JA (1954) Investigations on certain E. coli serotypes. Ann Med Exp Biol Fenn 32 [Suppl] 4:24–71Google Scholar
  50. Grünig HM, Lebek G (1988) Haemolytic activity and characteristics of plasmid and chromosomally borne hly genes isolated from E. coli of different origin. Zentral Bakteriol Mikrobiol Hyg[A] 267:485–494Google Scholar
  51. Hacker J, Hughes C (1985) Genetics of Escherichia coli Hemolysin. Curr Top Microbiol Immunol 118:139–162Google Scholar
  52. Hacker J, Hughes C, Hof H, Goebel W (1983) Cloned hemolysin genes from Escherichia coli that cause urinary tract infection determine different levels of toxicity in mice. Infect Immun 42:57–63Google Scholar
  53. Hacker J, Knapp S, Goebel W (1983) Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an E. coli O6 strain. J Bacteriol 154:1145–1152Google Scholar
  54. Hacker J, Schröter G, Schrettenbrunner A, Hughes C, Goebel W (1983) Hemolytic Escherichia coli strains in the human fecal flora as potential urinary pathogens. Zentral Bakteriol Mikrobiol Hyg [A] 254:370–378Google Scholar
  55. Hacker J, Schrettenbrunner A, Schröter G, Düvel H, Schmidt G, Goebel W (1986) Characterization of Escherichia coli wild-type strains by means of agglutination with antisera raised against cloned P-. S-. and MS-fimbriae antigen, hemagglutination, serotyping and hemolysin production. Zentral Bakteriol Mikrobiol Hyg [A] 261:219–231Google Scholar
  56. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W (1990) Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8:213–225Google Scholar
  57. Hampson DJ, Hinton M, Kidder DE (1985) Coliform numbers in the stomach and small intestine of healthy pigs following weaning at three weeks of age. J Comp Pathol 95:353–362Google Scholar
  58. Hampson DJ, Fu ZF, Bettelheim KA, Wilson MW (1988) Managemental influences on the selective proliferation of two strains of haemolytic Escherichia coli in weaned pigs. Epidemiol Infect 100:213–220Google Scholar
  59. Hinton M, Hampson DJ, Hampson E, Linton AH (1985) A comparison of the ecology of Escherichia coli in the intestine of healthy unweaned pigs and pigs after weaning. J Appl Bacteriol 58:471–478Google Scholar
  60. Hughes C, Hacker J, Roberts A, Goebel W (1983) Hemolysin production as a virulence marker in symptomic and asymptomatic urinary tract infections caused by Escherichia coli. Infect Immun 39:546–551Google Scholar
  61. Hugo F, Arvand M, Reichwein J, Mackman N, Holland IB, Bhakdi S (1987) Identification of hemolysin produced by clinical isolates of E. coli with monoclonal antibodies. J Clin Microbiol 25:26–30Google Scholar
  62. Hull SJ, Hull RA, Minshew BA, Falkow S (1982) Genetics of hemolysin of Escherichia coli. J Bacteriol 151:1006–1012Google Scholar
  63. Jones GW, Rutter JM (1972) Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect Immun 6:918–927Google Scholar
  64. Jorgensen SE, Short EC, Kurtz HJ, Mussen HK, Wu GK (1976) Studies on the origin of the α-hemolysin produced by Escherichia coli. J Med Microbiol 9:173–189Google Scholar
  65. Juarez A, Goebel W (1984) Chromosomal mutation that affects excretion of hemolysin in Escherichia coli. J Bacteriol 159:1083–1085Google Scholar
  66. Kayser H (1903) Über Bakterienhämolysine, im Besonderen das Colilysin. Z Hyg Infektionskr 42:118–138Google Scholar
  67. Kétyi I, Emödy L, Kontrohr T, Vertényi A, Pácsa S, Avdeeva TA, Safonova NV, Golutova NK (1978) Mouse lung oedema caused by a toxic substance of Escherichia coli strains. Acta Microbiol Acad Sci Hung 25:307–317Google Scholar
  68. Knapp S, Hacker J, Then I, Müller D, Geobel W (1984) Multiple copies of hemolysin genes and associated sequences in the chromosomes of uropathogenic Escherichia coli strains. J Bacteriol 159:1027–1033Google Scholar
  69. Knapp S, Then I, Wels W, Michel G, Hacker J, Goebel W (1985) Analysis of the flanking regions from different haemolysin determinants of Escherichia coli. Mol Gen Genet 200:385–392Google Scholar
  70. König B, König W, Scheffer J, Hacker J, Goebel W (1986) Role of Escherichia coli alphahemolysin and bacterial adherence in infection: requirement for release of inflammatory mediators from granulocytes and mast cells. Infect Immun 54:886–892Google Scholar
  71. Korhonen TK, Valtonen MW, Parkkinen J, Väisänen-Rhen V, Finne J, Ørskov F, Ørskov I, Svenson SB, Mäkelä PH (1985) Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491Google Scholar
  72. Koronakis V, Cross M, Senior B, Koronakis E, Hughes C (1987) The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J Bacteriol 169:1509–1515Google Scholar
  73. Lebek G, Gruenig HM (1985) Relation between the hemolytic property and iron metabolisms in Escherichia coli. Infect Immun 59:682–686Google Scholar
  74. Levine MM (1987) Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 155:377–389Google Scholar
  75. Linggood MA, Ingram PL (1982) The role of alpha-hemolysin in the virulence of Escherichia coli for mice. J Med Microbiol 15:23–30Google Scholar
  76. Lo RYC, Strathdee CA, Shewen PE (1987) Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica A 1. Infect Immun 55:1987–1996Google Scholar
  77. Low DA, David V, Lark D, Schoolnik G, Falkow S (1984) Gene clusters governing the production of hemolysin and mannose-resistant hemagglutination are closely linked in Escherichia coli serotype O4 and O6 isolates from urinary tract infections. Infect Immun 43:353–358Google Scholar
  78. Low DA, Braaten BA, Ling GV, Johnson DL, Ruby AL (1988) Isolation and comparison of Escherichia coli strains from canine and human patients with urinary infections. Infect Immun 56:2601–2609Google Scholar
  79. Ludwig A, Jarchau T, Benz R, Goebel W (1988) The repeat domain of Escherichia coli haemolysin (Hly A) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet 214:553–561Google Scholar
  80. Mackman N, Nicaud JM, Gray L, Holland IB (1986) Secretion of haemolysin by Escherichia coli. Curr Top Microbiol Immunol 125:159–181Google Scholar
  81. Menestrina G, Ropele M (1989) Voltage-dependent gating properties of the channel formed by E. coli hemolysin in planar lipid membranes. Biosci Rep 9:465–473Google Scholar
  82. Minshew BH, Jorgensen J, Cunts GW, Falkow S (1978) Association of hemolysin production, hemagglutination of human erythrocytes, and virulence for chicken embryos of extraintestinal Escherichia coli isolates. Infect Immun 20:50–54Google Scholar
  83. Mobley HLT, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatel CV, Jones BD, Warren JW (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithel cells: role of hemolysin in some strains. Infect Immun 58:1281–1289Google Scholar
  84. Müller D, Hughes C, Goebel W (1983) Relationship between plasmid and chromosomal hemolysin determinants of Escherichia coli. J Bacteriol 153:856–851Google Scholar
  85. Muranyi F, Juhasz S (1971) Haemolytic effect of Escherichia coli cultures and their filtrates. Acta Vet Hung 21:355–360Google Scholar
  86. Nicaud JM, Mackman N, Gray I, Holland IB (1985) Regulation of hemolysin synthesis in E. coli determined by HLY genes of human origin. Mol Gen Genet 199:111–116Google Scholar
  87. Opal SM, Cross AS, Gemski P, Lythe LW (1990) Aerobactin and α-hemolysin as virulence determinants in Escherichia coli isolated from human blood, urine, and stool. J Infect Dis 161:794–796Google Scholar
  88. Ørskov I, Ørskov F (1985) Escherichia coli in extra-intestinal infections. J Hyg 95:551–575Google Scholar
  89. Ørskov I, Svanbord Edén C, Ørskov F (1988) Aerobactin production of serotyped Escherichia coli from urinary tract infections. Med Microbiol Immunol 177:9–14Google Scholar
  90. Oropeza-Wekerle RL, Müller E, Kern P, Meyermann R, Goebel W (1989) Synthesis, inactivation, and localization of extracellular and intracellular Escherichia coli hemolysins. J Bacteriol 171:2783–2788Google Scholar
  91. Oropeza-Wekerle RL, Speth W, Imhof B, Gentschev I, Goebel W (1990) Translocation and compartimentalization of Escherichia coli hemolysin (Hly A). J Bacteriol 172:3711–3717Google Scholar
  92. Pellett S, Boehm DF, Snyder IS, Rowe G, Welch RA (1990) Characterization of monoclonal antibodies against the Escherichia coli hemolysin. Infect Immun 58:822–827Google Scholar
  93. Prada J, Beutin L (1991) Detection of Escherichia coli α-haemolysin genes and their expression in a human fecal strain of Enterobacter cloacae. FEMS Microbiol Lett 79:111–114Google Scholar
  94. Prada J, Baljer G, De Rycke J, Steinrück H, Zimmermann S, Stephan R, Beutin L (1991) Characteristics of α-hemolytic strains of Escherichia coli isolated from dogs with gastroenteritis. Vet Microbiol 28 (in press)Google Scholar
  95. Rennie RP, Arbuthnott JP (1974) Partial characterization of Escherichia coli haemolysin. J Med Microbiol 7:179–188Google Scholar
  96. Scheffer J, König W, Hacker J, Goebel W (1985) Bacterial adherence and hemolysin production from Escherichia coli induces histamine and leukotriene release from various cells. Infect Immun 50:271–278Google Scholar
  97. Scotland S, Willshaw GA, Smith HR, Rowe B (1990) Properties of strains of Escherichia coli O26:H11 in relation to their enteropathogenic or enterohemorrhagic classification. J Infect Dis 162:1069–1074Google Scholar
  98. Seeger W, Walter H, Suttorp N, Muhly M, Bhakdi S (1989) Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs. J Clin Invest 84:220–227Google Scholar
  99. Short EC, Kurtz H (1971) Properties of the hemolytic activites of Escherichia coli. Infect Immun 3:678–687Google Scholar
  100. Smith HW (1963) The haemolysins of Escherichia coli. J Pathol Bacteriol 85:197–211Google Scholar
  101. Smith CJ, Duncan JL (1978) Thiol-activated (oxygen-labile) cytolysins. In: Jeljaszewics J, Wadström T (eds) Bacterial toxins and cell membranes. Academic Press, London, pp 130–178Google Scholar
  102. Smith HW, Halls S (1967) The transmissible nature of the genetic factor in Escherichia coli that controls haemolysin production. J Gen Microbiol 47:153–161Google Scholar
  103. Smith HW, Huggins MB (1985) The toxic role of alpha-haemolysin in the pathogenesis of experimental Escherichia coli infections in mice. J Gen Microbiol 131:395–403Google Scholar
  104. Smith HW, Linggood MA (1971) Observations on the pathogenic properties of the K 88, Hly and Ent plasmids of Escherichia coli with particular reference to porcine diarrhoea. J Med Microbiol 4:467–485Google Scholar
  105. Snyder IS, Zwadyk P (1969) Some factors affecting production and assay of Escherichia coli haemolysins. J Gen Microbiol 55:139–143Google Scholar
  106. Strathdee CA, Lo RYC (1987) Extensive homology between the leukotoxin of Pasteurella haemolytica A1 and the alpha-hemolysin of Escherichia coli. Infect Immun 55:3233–3236Google Scholar
  107. Suttorp N, Flöer B, Schnittler H, Seeger W, Bhakdi S (1990) Effects of Escherichia coli hemolysin on endothelial cell function. Infect Immun 58:3796–3801Google Scholar
  108. Valvano M, Silver RP, Crosa JH (1986) Occurrence of chromosome or plasmid-mediated aerobactin iron transport systems and hemolysin production among clonal groups of human invasive strains of Escherichia coli K1. Infect Immun 52:192–199Google Scholar
  109. van den Bosch JF, Emödy L, Kétyi I (1982) Virulence of haemolytic strains of Escherichia coli in various animal models. FEMS Microbiol Lett 13:427–430Google Scholar
  110. van den Bosch JF, Postma P, Koopman PAR, de Graaff J, MacLaren DM (1982) Virulence of urinary and faecal Escherichia coli in relation to serotype, haemolysis and haemagglutination. J Hyg 88:567–577Google Scholar
  111. Vogel M, Hess J, Then I, Juarez A, Goebel W (1988) Characterization of a sequence (hly R) which enhances synthesis and secretion of hemolysin in Escherichia coli. Mol Gen Genet 212:76–84Google Scholar
  112. Waalwijk C, de Graaff J (1983) Inactivation of haemolysin production in Escherichia coli by transposon insertion results in loss of virulence. Antonie Leeuwenhoek J Microbiol Serol 49:23–30Google Scholar
  113. Waalwijk C, van den Bosch JF, MacLaren DM, de Graaff J (1982) Hemolysin plasmid coding for the virulence of a nephropathogenic Escherichia coli strain. Infect Immun 35:32–37Google Scholar
  114. Waalwijk C, MacLaren DM, de Graaff J (1983) In vivo function of hemolysin in the nephropathogenicity of Escherichia coli. Infect Immun 42:245–249Google Scholar
  115. Wagner W, Vogel M, Geobel W (1983) Transport of hemolysin across the outer membrane of E. coli requires two functions. J Bacteriol 154:200–210Google Scholar
  116. Wagner W, Kuhn M, Goebel W (1988) Active and inactive forms of hemolysin (Hly A) from Escherichia coli. Biol Chem Hoppe Seyler 369:39–36Google Scholar
  117. Walton JR, Smith DH (1969) New hemolysin (τ) produced by Escherichia coli. J Bacteriol 98:304–305Google Scholar
  118. Welch RA (1987) Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect Immun 55:2183–2190Google Scholar
  119. Welch RA, Falkow S (1984) Characterization of Escherichia coli hemolysins conferring quantitative differences in virulence. Infect Immun 43:156–160Google Scholar
  120. Welch RA, Pellett S (1988) Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170:1622–1630Google Scholar
  121. Welch RA, Dellinger EP, Minshew B, Falkow S (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667Google Scholar
  122. Welch RA, Hull R, Falkow S (1983) Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun 42:178–186Google Scholar
  123. Whittam TS, Wolfe ML, Wilson RA (1989) Genetic relationships among Escherichia coli isolates causing urinary tract infections in humans and animals. Epidemiol Infect 102:37–46Google Scholar
  124. Wold AE, Thorssén M, Hull S, Svanborg Edén C (1988) Attachment of Escherichia coli via mannose-or Gal α1–4Galβ-containing receptors to human colonic epithel cells. Infect Immun 56:2531–2537Google Scholar
  125. Zabala JC, De La Cruz F, Ortiz JM (1982) Several copies of the same insertion sequence are present in alpha-hemolytic plasmids belonging to four different incompatibility groups. J Bacteriol 151:472–476Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Lothar Beutin
    • 1
  1. 1.Robert Koch-Institut des BundesgesundheitsamtesBerlinFederal Republic of Germany

Personalised recommendations