Physics and Chemistry of Minerals

, Volume 20, Issue 5, pp 297–307 | Cite as

23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses

  • Xianyu Xue
  • Jonathan F. Stebbins


In order to decipher information about the local coordination environments of Na in anhydrous silicates from 23Na nuclear magnetic resonance spectroscopy (NMR), we have collected 23Na magic angle spinning (MAS) NMR spectra on several sodium-bearing silicate and aluminosilicate crystals with known structures. These data, together with those from the literature, suggest that the 23Na isotropic chemical shift correlates well with both the Na coordination and the degree of polymerization (characterized by NBO/T) of the material. The presence of a dissimilar network modifier also affects the 23Na isotropic chemical shift. From these relations, we found that the average Na coordinations in sodium silicate and aluminosilicate liquids of a range of compositions at 1 bar are nearly constant at around 6–7. The average Na coordinations in glasses of similar compositions also vary little with Na content (degree of polymerization). However, limited data on ternary alkali silicate and aluminosilicate glasses seem to suggest that the introduction of another network-modifier, such as K or Cs, does cause variations in the average local Na coordination. Thus it appears that the average Na coordination environments in silicate glasses are more sensitive to the presence of other network-modifiers than to the variations in the topology of the silicate tetrahedral network. Further studies on silicate glasses containing mixed cations are necessary to confirm this conclusion.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Aluminosilicate Nuclear Magnetic Resonance Spectrum Sodium Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Ba and Sr between plagioclase feldspar, silicate melts and hydrothermal solution. Geochim Cosmochim Acta 55:193–209Google Scholar
  2. Blundy JD, Wood BJ (1992) Partitioning of strontium between plagioclase and melt: reply to the comment Morse SA (ed). Geochim Cosmochim Acta 56:1739–1741Google Scholar
  3. Brese NE, O'Keeffe M (1991) Bond-valence parameters for solids. Acta Crystllogr B47:192–197Google Scholar
  4. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247Google Scholar
  5. Buhl J-C, Engelhardt G, Felsche J, Luger S (1988) 23Na MAS-NMR and 1H MAS-NMR studies in the hydro-sodalite system. Ber Bunsenges Phys Chem 92:176–181Google Scholar
  6. DalNegro A, De Pieri R, Quareni S, Taylor WH (1978) The crystal structures of nine feldspars from the Adamello Massif (Northern Italy). Acta Crystallogr B34:2699–2707Google Scholar
  7. Dal Negro A, De Pieri R, Quareni S, Taylor WH (1980) The crystal structures of nine feldspars from the Adamello Massif (Northern Italy): erratum. Acta Crystallogr B36:3211–3211Google Scholar
  8. Dallase WA, Thomas WM (1978) The crystal chemistry of silicarich, alkali-deficient nepheline. Contrib Mineral Petrol 66:311–318Google Scholar
  9. Dirken PJ, Jansen JBH, Schuiling RD (1992) Influence of octahedral polymerization on 23Na and 27Al MAS NMR in alkali fluoroaluminates. Am Mineral 77:718–724Google Scholar
  10. Dupree R, Holland D, McMillan PW, Pettifer RF (1984) The structure of soda-silica glasses: a MAS NMR study. J Non-Cryst Solids 68:399–410Google Scholar
  11. Engelhardt G, Michel D (1987) High-Resolution Solid-State NMR of Silicates and Zeolites. Wiley, New York, p 485Google Scholar
  12. Farnan I, Grandinetti PJ, Baltisberger JH, Stebbins JF, Werner U, Eastman MA, Pines A (1992) Quantification of the disorder in network-modified silicate glasses. Nature 358:31–35Google Scholar
  13. Felsche J, Luger S, Baerlocher C (1986) Crystal structures of the hydro-sodalite Na6[AlSiO4]6·8H2O and of the anhydrous sodalite Na6[AlSiO4]6. Zeolites 6:367–372Google Scholar
  14. Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Local structure of silicate glasses. Nature 293:611–615Google Scholar
  15. Gunawardane RP, Cradwick ME, Glasser LSD (1973) Crystal structure of Na2BaSi2O6. J Chem Soc (Dalton):2397–2400Google Scholar
  16. Harlow GE, Brown GE Jr (1980) Low albite: an X-ray and neutron diffraction study. Am Mineral 65:986–995Google Scholar
  17. Hater W, Muller-Warmuth W, Meier M, Frischat GH (1989) High-resolution solid-state NMR studies of mixed-alkali silicate glasses. J Non-Cryst Solids 113:210–212Google Scholar
  18. Hovis GL, Spearing DR, Stebbins JF, Roux J, Clare A (1992) X-ray powder diffraction and 23Na-27Al-29Si MAS-NMR investigation of nepheline-kalsilite crystalline solutions. Am Mineral 77:19–29Google Scholar
  19. Jäger C, Barth S, Feltz A (1989) 23Na NMR study of the nasicon system Na1+xZr2(PO4)3−x(SiO4)x. Chem Phys Lett 154:45–48Google Scholar
  20. Kirkpatrick RJ (1988) NMR spectroscopy of minerals and glasses. In: Hawthrone FC (ed). Spectroscopic methods in mineralogy and geology. Mineralogical Society of America, Washington, D.C., pp 341–403Google Scholar
  21. Kirkpatrick RJ, Kinsey RA, Smith KA, Henderson DM, Oldfield E (1985) High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars. Am Mineral 70:106–123Google Scholar
  22. Kundla E, Samoson A, Lippmaa E (1981) High-resolution NMR of quadrupolar nuclei in rotating solids. Chem Phys Lett 83:229–232Google Scholar
  23. McDonald WS, Cruickshank DWJ (1967) A reinvestigation of the structure of sodium metasilicate, Na2SiO3. Acta Crystallogr 22:37–43Google Scholar
  24. McKeown DA, Waychunas GA, Brown GE Jr (1985) EXAFS and XANES study of the local coordination environment of sodium in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system. J Non-Cryst Solids 74:325–348Google Scholar
  25. Merzbacher CI, White WB (1988) Structure of Na in aluminosilicate glasses: A far infrared reflectance spectroscopic study. Am Mineral 73:1089–1094Google Scholar
  26. Müller D (1982) Zur Bestimmung chemischer Verschiebungen der NMR-Frequenzen bei Quadrupolkernen aus den MAS-NMR-Spektren. Ann Phys 39:451–460Google Scholar
  27. Oestrike R, Yang W-H, Kirkpatrick RJ, Hervig RL, Navrotsky A, Montez B (1987) High-resolution 23Na, 27Al, and 29Si NMR spectroscopy of framework aluminosilicate glasses. Geochim Cosmochim Acta 51:2199–2209Google Scholar
  28. Pant AK (1968) A reconsideration of the crystal structure of β-Na2Si2O5. Acta Crystallogr B24:1077–1083Google Scholar
  29. Pank AK, Cruickshank DWJ (1968) The crystal structure of α-Na2Si2O5. Acta Crystallogr B24:13–19Google Scholar
  30. Phillips BL, Kirkpatrick RJ, Hovis GL (1988) 27Al, 29Si, and 23Na MAS NMR study of an Al, Si ordered alkali feldspar solid solution series. Phys Chem Minerals 16:262–275Google Scholar
  31. Prewitt CT, Burnham CW (1966) The crystal structure of Jadeite, NaAlSi2O6. Am Mineral 51:956–975Google Scholar
  32. Stebbins JF, Murdoch JB, Schneider E, Carmichael IS, Pines A (1985) A high-temperature high-resolution NMR study of 23Na, 27Al and 29Si in molten silicates. Nature 314:250–252Google Scholar
  33. Stebbins JF, Farnan I, Williams EH, Roux J (1989) Magic angle spinning NMR observation of sodium site exchange in nepheline at 500° C. Phys Chem Minerals 16:763–766Google Scholar
  34. Stebbins JF, Farnen I (1992) The effects of temperature on silicate liquid structure: a multinuclear, high temperature NMR study. Science 255:586–589Google Scholar
  35. Stebbins JF, Farnen I, Dando N, Tzeng S-Y (1992) Solids and liquids in the NaF-AlF3-Al2O3 system: a high-temperature NMR study. J Am Ceram Soc 75:3001–3006Google Scholar
  36. Templeman GJ, Van Geet AL (1972) Sodium magnetic resonance of aqueous salt solutions. J Am Chem Soc 94:5578–5582Google Scholar
  37. Vessal B, Greaves GN, Marten PT, Chadwick AV, Mole R, HoudeWalter S (1992) Cation microsegregation and ionic mobility in mixed alkali glasses. Nature 356:504–506Google Scholar
  38. Xue X, Stebbins JF, Kanzaki M, McMillan PF, Poe B (1991) Pressure-induced silicon coordination and tetrahedral structural changes in alkali oxide-silica melts up to 12 GPa: NMR, Raman, and Infrared spectroscopy. Am Mineral 76:8–26Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Xianyu Xue
    • 1
  • Jonathan F. Stebbins
    • 1
  1. 1.Department of GeologyStanford UniversityStanfordUSA

Personalised recommendations