Journal of Comparative Physiology A

, Volume 172, Issue 1, pp 91–99 | Cite as

Functional and morphological regeneration of olfactory tracts and subtracts in goldfish

  • H. P. Zippel
  • M. Hofmann
  • D. L. Meyer
  • S. Zeman


Goldfish are ideal vertebrates for the study of regeneration within the central nervous system. The present behavioural and neuroanatomical investigations after bilateral transection of the entire olfactory tracts of either lateral or medial subtracts have been designed (1) to examine the relationship between morphological changes and changes in the perception of spontaneously preferred chemosensory stimuli, (2) to investigate the animals' ability to qualitatively discriminate amino acids in olfactory concentrations (below taste threshold, 10-6–10-8M), one of which had been rewarded preoperatively (“specific” regeneration), and (3) to examine the discriminative ability for amino acids at concentrations above taste threshold (> 10-5M) in intact sham-operated, and in operated specimens at various time intervals before functional regeneration. Within 10–14 days after bilateral transection of the lateral olfactory tracts, specific regeneration was observed. After bilateral transection of the medial olfactory tracts, no immediate behavioural change was recorded for 1 week. Thereafter, goldfish behaviour became unstable and dropped to the chance level for 3–4 weeks. Subsequent to this time the goldfish returned to the preoperative level. Following bilateral crushing of the olfactory tracts and after total tractotomy, a specific regeneration was observed after 4 weeks and 6–8 weeks, respectively, post op. HRP studies showed that after bilateral lesioning a qualitative reinnervation of the respective nuclei within the forebrain by the medial and lateral olfactory subtracts was evident.

Key words

Regeneration Olfactory tract Behaviour Morphology Goldfish 



funnel biting


funnel orientation


horseradish peroxidase


lateral olfactory tract


medial olfactory tract


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartheld CS von, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238:475–487Google Scholar
  2. Cohen AH, Mackler SA, Selzer ME (1988) Behavioral recovery following spinal transection: functional regeneration in the lamprey CNS. Trends Neurosci 11:227–231Google Scholar
  3. Das GD, Wallace RB (1986) Neural transplantation and regeneration. Proceedings in life sciences. Springer, New York Berlin HeidelbergGoogle Scholar
  4. Demski LS, Dulka JG (1984) Functional-anatomical studies on sperm release evoked by electrical stimulation of the olfactory tract in goldfish. Brain Res 291:241–247Google Scholar
  5. Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–366Google Scholar
  6. Flohr H (1988) Post-lesion neural plasticity. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Fujita I, Sorensen PW, Stacey NE, Hara TJ (1991) The olfactory system, not the terminal nerve, functions as the primary chemosensory pathway mediating responses to sex pheromones in male goldfish. Brain Behav Evol 38:313–321Google Scholar
  8. Hudson R, Distel H (1987) Regional autonomy in the peripheral processing of odor signals in newborn rabbits. Brain Res 421:85–94Google Scholar
  9. Hudson R, Distel H, Zippel HP (1990) Perceptual performance in peripherally reduced olfactory systems. In: Schild D (ed) Chemosensory information processing. NATO ASI Series, Springer, Berlin Heidelberg New York, pp 259–269Google Scholar
  10. Kirsche W, Kirsche K (1960) Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius L. Z Mikrosk Anat Forsch 67:141–182Google Scholar
  11. Kyle AL, Sorensen PW, Stacey NE, Dulka JG (1987) Medial olfactory tract pathways controlling sexual reflexes and behavior in teleosts. In: The terminal nerve (Nervus terminalis). Ann NY Acad Sci 519:97–107Google Scholar
  12. Levine RL, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237:427–444Google Scholar
  13. Mackler SA, Yin HS, Selzer ME (1986) Determinants of directional specificity in the regeneration of lamprey spinal axons. J Neurosci 6:1814–1821Google Scholar
  14. Schmidt J (1988) Regeneration of the retinotectal projection in goldfish: selective stabilization of retinotopic synapses by correlated activity. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 499–508Google Scholar
  15. Selzer ME, Lurie D, Mackler SA (1988) Pathfinding and synaptic specificity of regenerating spinal axons in the lamprey. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 233–248Google Scholar
  16. Sorensen PW, Hara TJ, Stacey NE, Goetz FW (1988) F prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish. Biol Reprod 39:1039–1050Google Scholar
  17. Sorensen PW, Hara TJ, Stacey NE, Dulka JG (1990) Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17α, 20β-dihydroxy-4-pregnen-3-one. J Comp Physiol A 166:373–383Google Scholar
  18. Sorensen PW, Hara TJ, Stacey NE (1991) Sex pheromones selectively stimulate the medial olfactory tract of male goldfish. Brain Res 558:343–347Google Scholar
  19. Stacey NE, Kyle AL (1983) Effects of olfaction tract lesions on sexual and feeding behavior in the goldfish. Physiol Behav 30:621–628Google Scholar
  20. Stuermer CAO (1988) Path-and homefinding of regenerating retinal axons in goldfish. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 489–497Google Scholar
  21. Valentincic T, Caprio C (1992) Gustatory behavior of channel catfish to amino acids. In: Doty RL (ed) Chemical signals in vertebrates IV. Plenum Press, New York London (in press)Google Scholar
  22. Westerman RA (1965) Specificity in regeneration of optic and olfactory pathways in teleost fish. Stud Physiol 263–269Google Scholar
  23. Westerman RA, Baumgarten R von (1964) Wiederherstellung der Riechfunktionen nach Tractus olfactorius-Durchschneidung beim Karpfen. Pflügers Arch 279:35Google Scholar
  24. Windle F (1955) Regeneration in the central nervous system. Charles C Thomas, Springfield, IllinoisGoogle Scholar
  25. Zippel HP, Westerman RA (1970) Geruchsdifferezierungsvermögen der Karausche (Carassius carassius) nach funktioneller und histologischer Regeneration des Tractus olfactorius und der Commissura anterior. Z Vergl Physiol 69:38–53Google Scholar
  26. Zippel HP, von Baumgarten R, Westerman RA (1970) Histologische, funktionelle und spezifische Regeneration nach Durchtrennung der Fila olfactoria beim Goldfisch (Carassius auratus). Z Vergl Physiol 69:79–98Google Scholar
  27. Zippel HP, Breipohl W, Schoon H (1981) Functional and morphological changes in fish chemoreception systems following ablation of the olfactory bulbs. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 377–394Google Scholar
  28. Zippel HP, Meyer DL, Knaust M (1988) Peripheral and central post-lesion plasticity in the olfactory system of the goldfish: behavior and morphology. In: Flohr H (ed) Post-lesion neural plasticity. Springer, Berlin Heidelberg New York, pp 577–591Google Scholar
  29. Zippel HP, Voigt R, Knaust M, Luan Y (1993) Spontaneous behavior, training and discrimination training in goldfish using chemosensory stimuli. J Comp Physiol A 172:81–90Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. P. Zippel
    • 1
  • M. Hofmann
    • 2
    • 3
  • D. L. Meyer
    • 2
    • 3
  • S. Zeman
    • 1
  1. 1.Physiologisches Institut der UniversitätGöttingenGermany
  2. 2.Anatomisches Institut der UniversitätGöttingen
  3. 3.Institut für NeurobiologieMagdeburgGermany

Personalised recommendations