Anatomy and Embryology

, Volume 187, Issue 6, pp 515–522

Layer V pyramidal cells in the adult human cingulate cortex

A quantitative Golgi-study
  • Gottfried Schlaug
  • Este Armstrong
  • Axel Schleicher
  • Karl Zilles
Article

Abstract

The anterior and posterior parts of the human cingulate cortex differ in their absolute number of neurons per unit volume, with fewer neurons in the anterior part. To test the hypothesis that lower absolute number and packing density of neurons in the anterior cingulate cortex are associated with an increased complexity in the neuropil compartment, dendritic arborizations of layer V neurons in both cingulate parts were analyzed in a Golgi study. Results show that these neurons in the anterior cingulate cortex have more primary and secondary basal dendrites than those in the posterior cingulate cortex. This establishes an association of a higher complexity of the dendritic arborization in the anterior cingulate cortex with a lower cell number per unit volume and larger neuropil compartment. The significant lower degree of dendritic arborization in the posterior cingulate cortex is accompanied by a higher cell packing density. These structural differences are associated with functional differences between the two parts of the human cingulate cortex.

Key words

Cingulate cortex Morphometry Image analysis Dendritic arborization Architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong E, Parker B (1986) A new Golgi method for adult human brains. J Neurosci Methods 17:247–254Google Scholar
  2. Baleydier C, Mauguier F (1980) The duality of the cingulate gyrus in monkey. Brain 103:525–554Google Scholar
  3. Baleydier C, Mauguier F (1987) Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey. Exp Brain Res 66:385–393Google Scholar
  4. Berry M, Hollingworth T, Flinn RM, Andersen EM (1972) Dendritic field analysis — a reappraisal, T.I.T.J. Life Sci 2:129–140Google Scholar
  5. Blinkov SM, Glezer II (1968) Das Zentralnervensystem in Zahlen und Tabellen. Fischer, JenaGoogle Scholar
  6. Braitenberg V, Guglielmotti V, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283Google Scholar
  7. Brodmann K (1909) Vergleichende Lokalisationslehre der Gross-hirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, LeipzigGoogle Scholar
  8. Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J CompNeurol 102:511–556Google Scholar
  9. Buell SJ (1982) Golgi-Cox and rapid Golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–507Google Scholar
  10. Coleman PD, Riesen AH (1968) Environmental affects on cortical dendritic fields. I. Rearing in the dark. J Anat 102:363–374Google Scholar
  11. De Voogd TJ, Chang FLF, Fleeter MK, Jencius MJ, Greenough WT (1981) Distortions induced in neuronal quantification by camera-lucida analysis: comparisons using a semi-automated data acquisition system. J Neurosci Methods 3:285–294Google Scholar
  12. Econome C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien BerlinGoogle Scholar
  13. Feldman NL, Peters A (1979) A technique for estimating total spine numbers on Golgi impregnated dendrites. J Comp Neurol 188:527–542Google Scholar
  14. Foh E, Haug H, Koenig M, Rast A (1973) Quantitative Bestimmung zum feineren Aufbau der Sehrinde der Katze, zugleich ein methodischer Beitrag zur Messung des Neuropils. Microsc Acta 75:148–168Google Scholar
  15. Globus A, Scheibel AB (1967a) Pattern and field in cortical structure: the rabbit. J Comp Neurol 131:155–172Google Scholar
  16. Globus A, Scheibel AB (1967b) Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp Neurol 18:116–131Google Scholar
  17. Golgi C (1873) Sulla struttura della sostanza grigia dell cervello. Gass Med Ital Lombarda 33:244–246Google Scholar
  18. Haug H, Rebhan J (1956) Der Grauzellkoeffizient der menschlichen Hirnrinde. Berechnungen nach dem Zahlenmaterial v. Econo mo's. Acta Anat 28:259–287Google Scholar
  19. Haug H, Kuehl S, Mecke E, Sass NL, Wasner K (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. J Hirnforsch 4:353–374Google Scholar
  20. Hollingworth T, Berry M (1975) Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. Philos Trans R Soc Lond [Biol] 270:227–264Google Scholar
  21. Horsfield K, Dart G, Olson DE, Filley GF, Cumming G (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217Google Scholar
  22. Kok LP, Boon ME (1990) Microwaves for microscopy. J Microsc 158:291–322Google Scholar
  23. Landas S, Phillips MI (1982) Staining of human and rat brain vibratome sections by a new Golgi method. J Neurosci Methods 5:147–151Google Scholar
  24. Marin-Padilla M (1967) Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J Comp Neurol 177:159–172Google Scholar
  25. Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14:633–646Google Scholar
  26. McMullen N, Glaser EM, Tagamets M (1984) Morphometry of spine-free nonpyramidal neurons in rabbit auditory cortex. J Comp Neurol 222:383–395Google Scholar
  27. Mehraein P, Yamada M, Tranowska-Dzidoszko E (1975) Quantitative study of dendrites and dendritic spines in Alzheimer's disease and senile dementia. In: Kreutzberg GW (ed) Advances in neurology 12. Raven Press, New York, pp 453–458Google Scholar
  28. Milhouse OE (1981) The Golgi methods. In: Heimer L, Robards M(eds) Neuroanatomical tract-tracing methods. Plenum Press, New York, pp 314–344Google Scholar
  29. Nakamura S, Akiguchi I, Kameyama M, Mizuno N (1985) Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol 65:281–284Google Scholar
  30. Peters A, Jones EG (1984) Cerebral cortex, vol 1. Plenum Press, New York LondonGoogle Scholar
  31. Peters A, Kara DA, Harriman KM (1985) The neuronal composition of area 17 of rat visual cortex. III. Numerical consideration. J Comp Neurol 238:263–274Google Scholar
  32. Poliakov GI, Zhukova GP (1954) Die strukturelle Organization des menschlichen Kortex auf Grund ontogenetischer Daten. In: Zytoarchitektonik der Großhirnrinde des Menschen. Moskau, 1949Google Scholar
  33. Rall W (1967) Distinguishing theoretical synaptic potential computed for different soma-dendritic distribution of synaptic input. J Neurophysiol 30:1138–1168Google Scholar
  34. Ramón y Cajal S(1909) Histologie du système nerveux de l'homme et des Vertébrés. Maloine, ParisGoogle Scholar
  35. Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244Google Scholar
  36. Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19:25–39Google Scholar
  37. Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. In: Müller M, Spatz H, Vogel P (eds) Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, vol 98. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  38. Schadé JP, Baxter CF (1960) Changes during growth in the volume and surface area of cortical neurons in the rabbit. Exp Neurol 2:158–178Google Scholar
  39. Schadé JP, Groeningen WB van (1961) Structural organization of the human cerebral cortex. Acta Anat 47:74–111Google Scholar
  40. Scheibel ME, Scheibel AB (1978) The dendritic structure of the human Betz cell. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New YorkGoogle Scholar
  41. Schlaug G, Armstrong E, Schleicher A, Zilles K (1987) Quantitative aspects of the human cingulate cortex using a computer controlled image analyzer. Soc Neurosci Abstr 13:247–249Google Scholar
  42. Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235Google Scholar
  43. Schönheit B, Schulz E (1976) Quantitative Untersuchungen über die Dendriten-Spines an den Lamina V-Pyramidenzellen im Bereich der vorderen'zingulären Rinde der Ratte. J Hirnforsch 17:171–187Google Scholar
  44. Schulz E, Schönheit B, Holz L (1976) Quantitative Untersuchungen am Dendritenbaum von großen (regulären) Pyramidenzellen der Lamina V im Bereich der vorderen cingulären Rinde der Ratte. J Hirnforsch 17:155–168Google Scholar
  45. Schulz E, Patzwaldt A, Rudolf A (1987) Quantitative und verglei-chende Untersuchungen an Lamina V-Pyramidenneuronen der Regio retrosplenialis granularis der Ratte. J Hirnforsch 28:357–373Google Scholar
  46. Seldon HL (1981a) Structure of human auditory cortex. I. Cytoar-chitectonics and dendritic distributions. Brain Res 229:277–294Google Scholar
  47. Seldon HL (1981b) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310Google Scholar
  48. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406Google Scholar
  49. Sholl DA (1955) The surface area of cortical neurons. J Anat 89:571–572Google Scholar
  50. Sholl DA (1956) The organization of the cerebral cortex. Methuen, LondonGoogle Scholar
  51. Smit GJ, Uylings HBM (1975) The morphometry of the branching pattern in dendrites of the visual cortex pyramidal cells. Brain Res 87:41–53Google Scholar
  52. Stephan H (1964) Die kortikalen Anteile des limbischen Systems (Morphologie und Entwicklung) Nervenarzt 35:396–401Google Scholar
  53. Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol IV/9. Springer, Berlin Heidelberg New York, pp 1–998Google Scholar
  54. Strahler AN 61952 Hypsometrie analysis of erosional topography. Bull Geol Soc Am 63:1117–1142Google Scholar
  55. Uylings HBM, Smit GJ, Veltman WAM (1975) Ordering methods in quantitative analysis of branching structure of dendritic trees. In: Kreutzberg GW (ed) Physiology and dendrites, advances in neurology, vol 12. Raven Press, New York, pp 247–254Google Scholar
  56. Uylings HBM, Eden CG van, Verwer RWH (1984) Morphometric methods in sexual dimorphism research on the central nervous system. Prog Brain Res 61:215–222Google Scholar
  57. Uylings HBM, Ruiz-Marcos A, Pelt J van (1986) The metric analysis of three-dimensional dendritic tree pattern: a methodological review. J Neurosci Methods 18:127–151Google Scholar
  58. Verwer RWH, Pelt J van (1986) Descriptive and comparative analysis of geometrical properties of neuronal tree structures. J Neurosci Methods 18:179–206Google Scholar
  59. Vogt BA (1976) Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study. J Comp Neurol 219:143–181Google Scholar
  60. Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 4. Plenum Press, New York, pp 89–149Google Scholar
  61. Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207Google Scholar
  62. Williams RS, Ferrante RJ, Caviness W (1978) The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 37:13–33Google Scholar
  63. Wree A, Zilles K, Schleicher A (1980) Analyse der laminaeren Struktur der Area striata mit verschiedenen stereologischen Messmethoden. Verh Anat Ges 74:727–728Google Scholar
  64. Zilles K (1990) Cortex. In: Paxinos G (ed) The human nervous System. Academic Press, San Diego, pp 757–802Google Scholar
  65. Zilles K, Schleicher A (1980) Quantitative Analyse der laminaeren Struktur menschlicher Cortexareale. Verh Anat Ges 74:725–726Google Scholar
  66. Zilles K, Armstrong E, Schlaug G, Schleicher K (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524Google Scholar
  67. Zhukova GP (1953) Zur Frage der Entwicklung der Rindenendigungen des motorischen Analysators. Arch Anat 30:32–38Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Gottfried Schlaug
    • 1
  • Este Armstrong
    • 2
  • Axel Schleicher
    • 3
  • Karl Zilles
    • 3
  1. 1.Department of NeurologyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Department of Cellular PathologyArmed Forces Institute of PathologyWashington DCUSA
  3. 3.Department of AnatomyC. and O. Vogt Brain Research Institute, Heinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations