Advertisement

Human Genetics

, Volume 96, Issue 1, pp 70–78 | Cite as

Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation

  • Angenita F. van Lieburg
  • Marian A. J. Verdijk
  • Frans Schoute
  • Marjolijn J. L. Ligtenberg
  • Bernard A. van Oost
  • Franz Waldhauser
  • Maria Dobner
  • Leo A. H. Monnens
  • Nine V. A. M. Knoers
Original Investigation

Abstract

Nephrogenic diabetes insipidus (NDI) usually shows an X-linked recessive mode of inheritance caused by mutations in the vasopressin type 2 receptor gene (AVPR2). In the present study, three NDI families are described in which females show clinical features resembling the phenotype in males. Maximal urine osmolality in three female patients did not exceed 200 mosmol/kg and the absence of extra-renal responses to 1-desamino-8-d-arginine vasopressin was demonstrated in two of them. All affected females and two asymptomatic female family members were shown to be heterozygous for an AVPR2 mutation. Skewed X-inactivation is the most likely explanation for the clinical manifestation of NDI in female carriers of an AVPR2 mutation. It is concluded that, in female NDI patients, the possibility of heterozygosity for an AVPR2 gene mutation has to be considered in addition to homozygosity for mutations in the aquaporin 2 gene.

Keywords

Female Patient Metabolic Disease Clinical Manifestation Gene Mutation Vasopressin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal R, Janakiramen N, Luken J, Kumar S (1986) Nephrogenic diabetes insipidus in a female infant with hydrocephalus. Am J Dis Child 140:1095–1096Google Scholar
  2. Bichet DG, Razi M, Lonergan M, Arthus M, Papukna V, Kortas C, Barjon J (1988) Hemodynamic and coagulation responses to 1-desamino[8-D-arginine]vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318:881–887Google Scholar
  3. Bichet DG, Arthus M, Lonergan M, Hendy GN, Paradis AJ, Fujiwara TM, Morgan K, et al (1993) X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J Clin Invest 92:1262–1268Google Scholar
  4. Braden GL, Singer I, Cox M (1985) Nephrogenic diabetes insipidus. In: Gonick HC, Buckalew VM Jr (eds) Renal tubular disorders. Pathophysiology, diagnosis and management. Dekker, New York, pp 387–436Google Scholar
  5. Brenner B, Seligsohn U, Hochberg Z (1988) Normal response of factor VIII and von Willebrand factor to 1-deamino-8D-arginine vasopressin in nephrogenic diabetes insipidus. J Clin Endocrinol Metab 67:191–193Google Scholar
  6. Brodehl J, Braun L (1964) Hereditary nephrogenic diabetes insipidus in a female infant (complete form) Familiärer nephrogener Diabetes insipidus mit voller Ausprägung bei einem weib-lichen Säugling. Klin Wochenschr 42:563Google Scholar
  7. Brown RM, Fraser NJ, Brown GK (1990) Differential methylation of the hypervariable locus DXS255 on active and inactive X-chromosomes correlates with the expression of a human X-linked gene. Genomics 7:215–221Google Scholar
  8. Cannon JF (1955) Diabetes insipidus. Clinical and experimental studies with consideration of genetic relationships. Arch Int Med 96:215–272Google Scholar
  9. Carter C, Simpkiss M (1956) The “carrier” state in nephrogenic diabetes insipidus. Lancet 11:1069–1073Google Scholar
  10. Culpepper RM, Hebert SC, Andreoli TE (1983) Nephrogenic diabetes insipidus. In: Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hil, New York, pp 1867–1888Google Scholar
  11. Dancis J, Birmingham JR, Leslie SH (1948) Congenital diabetes insipidus resistant to treatment with pitressin. Am J Dis Child 75:316–328Google Scholar
  12. Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, Os CH van, Oost BA van (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95Google Scholar
  13. Fahrenholz F, Akhundova A, Büchner H, Gorbulev V (1993) V2 lysine vasopressin receptor and oxytocin receptor from pig LLC-PK1 cells: two new members of the vasopressin-oxytocin receptor family. In: Gross P, Richter D, Robertson GL (eds) Vasopressin. Libbey Eurotext, Paris, pp 45–57Google Scholar
  14. Feigin RD, David LR, Kaufman RL (1970) Nephrogenic diabetes insipidus in a Negro kindred. Am J Dis Child 120:64–68Google Scholar
  15. Ingerslev J, Schwartz M, Lamm LU, Kruse TA, Bukh A, Stenbjergm S (1989) Female haemophilia A in a family with seeming extreme bidirectional lyonization tendency: abnormal premature X-chromosome inactivation ? Clin Genet 35:41–48Google Scholar
  16. Knoers N, Brommer EJ, Willems H, Oost BA van, Monnens LAH (1990) Fibrinolytic responses to 1-desamino-8-D-arginine-vasopressin in patients with congenital nephrogenic diabetes insipidus. Nephron 54:322–326Google Scholar
  17. Langley JM, Balfe JW, Selander T, Ray PN, Clarke JTR (1991) Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet 38:90–94Google Scholar
  18. Lechner K (1982) Blutgerinnungsstörungen — Laboratoriumsdiagnostik hämatologischer Erkrankungen. Springer, Berlin Heidelberg New York, pp 188–192Google Scholar
  19. Lieburg AF van, Verdijk MAJ, Knoers VVAM, Essen AJ van, Proesmans W, Mallmann R, Monnens LAH, et al (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water channel gene. Am J Hum Genet 55:648–652Google Scholar
  20. Matsumoto T, Ito Y, Yukizane S, Ichikawa K, Yamashita F (1988) Hereditary nephrogenic diabetes insipidus type-2. Acta Paediatr Jpn 30:714–716Google Scholar
  21. McKusick VA (1986) Mendelian inheritance in man, 7th edn. Johns Hopkins University Press, Baltimore, p 197Google Scholar
  22. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedGoogle Scholar
  23. Moses AM, Miller JL, Levine MA (1988) Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J Clin Endocrinol Metab 66:1259–1264Google Scholar
  24. ]Niaudet P, Dechaux M, Leroy D, Broyer M (1985) Nephrogenic diabetes insipidus in children. Front Horm Res 13:224–231Google Scholar
  25. Nisen P, Stamberg J, Ehrenpreis R, Velasco S, Shende A, Engelberg J, Karayalcin G, et al (1989) The molecular basis of severe hemophilia B in a girl. N Engl J Med 315:1139–1142Google Scholar
  26. Ohzeki T, Igarashi T, Okamoto A (1984) Familial cases of congenital nephrogenic diabetes insipidus type II: remarkable increment of urinary adenosine 3′,5′-monophosphate in response to antidiuretic hormone. J Pediatr 104:593–595Google Scholar
  27. Ouweland AMW van den, Dreesen JCFM, Verdijk M, Knoers NVAM, Monnens LAH, Rocchi M, Oost BA van (1992) Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nature Genet 2:99–102Google Scholar
  28. Pallacks R, Nolte S, Banzhoff A, Gordjani N, Rascher W, Seyberth HW (1991) Familiärer nephrogener Diabetes insipidus (NDI) bei einem weiblichen Frühgeborene der 26 SSW. Monatsschr Kinderheilkd 139:184Google Scholar
  29. Pan Y, Metzenberg A, Das S, Jing B, Gitschier J (1992) Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nature Genet 2:103–106Google Scholar
  30. Richards CS, Watkins SC, Hoffmann EP, Schneider NR, Milsark IW, Katz KS, Cook JD, et al (1990) Skewed X inactivation in a female monozygotic twin results in Duchenne muscular dystrophy. Am J Hum Genet 46:672–681Google Scholar
  31. Robinson MG, Kaplan SA (1960) Inheritance of vasopressin-resistant (“nephrogenic”) diabetes insipidus. Am J Dis Child 99:164–174Google Scholar
  32. Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus M, Hendy GN, Birnbaumer M, et al (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235Google Scholar
  33. Schofer O, Beetz R, Kruse K, Rascher C, Schütz C, Bohl J (1990) Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child 65:885–887Google Scholar
  34. Schreiner RL, Skafish PR, Anand SK, Northway JD (1978) Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child 53:906–908Google Scholar
  35. Tihy F, Vogt N, Recan D, Malfoy B, Leturcq F, Coquet M, Serville F, et al (1994) Skewed inactivation of an X chromosome deleted at the dystrophin gene in an asymptomatic mother and her affected daughter. Hum Genet 93:563–567Google Scholar
  36. Wiggelinkhuizen J, Wolff B, Cremin BJ (1973) Nephrogenic diabetes insipidus and obstructive uropathy. Am J Dis Child 126:398–401Google Scholar
  37. Winchester B, Young E, Geddes S, Genet S, Habel A, Boyd Y, Malcolm S (1990) Mucopolysaccharidosis II (Hunter disease) in a female twin. J Med Genet 27:645–661Google Scholar
  38. Zimmerman D, Green OC (1975) Nephrogenic diabetes insipidus — type II: defect distal to the adenylate cyclase step. Pediatr Res 9:381Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Angenita F. van Lieburg
    • 1
  • Marian A. J. Verdijk
    • 2
  • Frans Schoute
    • 2
  • Marjolijn J. L. Ligtenberg
    • 2
  • Bernard A. van Oost
    • 2
  • Franz Waldhauser
    • 3
  • Maria Dobner
    • 3
  • Leo A. H. Monnens
    • 1
  • Nine V. A. M. Knoers
    • 2
  1. 1.Department of PediatricsUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of Human GeneticsUniversity Hospital NijmegenNijmegenThe Netherlands
  3. 3.Department of PediatricsUniversity HospitalWienAustria

Personalised recommendations