Advertisement

Human Genetics

, Volume 96, Issue 1, pp 33–38 | Cite as

Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36

  • Hans Eiberg
  • Allan Meldgaard Lund
  • Mette Warburg
  • Thomas Rosenberg
Original Investigation

Abstract

Congenital cataract, type Volkmann (McKusick no 115665, gene symbol CCV) is an autosomal dominant eye disease. The disease is characterized by a progressive, central and zonular cataract, with opacities both in the embryonic, fetal and juvenile nucleus and around the anterior and posterior Y-suture. We examined blood samples from 91 members of a Danish pedigree comprising 426 members, by using highly informative short tandem repeat polymorphisms and found the closest linkage of the disease gene (CCV) to a (CA) n dinucleotide repeat polymorphism at locus D1S243 (Zmax = 14.04 at θ M = 0.025 θ F = 0.000), at a penetrance of 0.90. Using two additional chromosome 1 markers, we were able to map the CCV gene in the sequence 1pter-(CCV, D1S243)-D1S468-D1S214. The (enolase 1) gene has been mapped to this area; however, a mutation described in this gene did not give eye disease.

Keywords

Cataract Dinucleotide Tandem Repeat Disease Gene Short Tandem Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodker FS, Lavery MA, Mitchell TN, Lovrien EW, Maumenee IH (1990) Microphthalmos in the presumed homozygous offspring of a first cousin marriage and linkage analysis of a locus in a family with autosomal dominant Cerulean congenital cataracts. Am J Med Genet 37:54–59Google Scholar
  2. Carper D, Shinohara T, Piatigorsky J, Kinoshita JH (1982) Deficiency of functional messenger RNA for a developmentally regulated beta-crystallin polypeptide in a hereditary cataract. Science 217:463–464Google Scholar
  3. Carritt B, King J, Welch HM (1982) Gene order and localization of enzyme loci on the short arm of chromosome 1. Ann Hum Genet 46:329–335Google Scholar
  4. Conneally PM, Wilson AF, Merrit AD, Helveston EM, Palmer CG, Wang LY (1978) Confirmation of genetic heterogeneity in autosomal dominant forms of congenital cataracts from linkage studies. Cytogenet Cell Genet 22:295–297Google Scholar
  5. D'Ancoma GG, Chern CJ, Benn P, Croce CM (1977) Assignment of the human gene for enolase 1 to region pter→p36 of chromosome 1. Cytogenet Cell Genet 18:327–332Google Scholar
  6. Eiberg H, Marner E, Rosenberg T, Mohr J (1988) Marner's cataract (CAM) assigned to chromosome 16: linkage to haptoglobin. Clin Genet 34:272–275Google Scholar
  7. Eiberg H, Nielsen LS, Klausen J, Dalén M, Kristensen M, Bisgaard ML, Møller N, Mohr J (1989) Linkage between serum cholinesterase 2 (CHE2) and γ-crystallin gene cluster (CRYG): assignment to chromosome 2. Clin Genet 35:313–321Google Scholar
  8. Eiberg H, Marner E, Rosenberg T, Mohr J (1991) RFLP typing of a family with Marner's cataract. Clin Genet 40:102Google Scholar
  9. Garber AT, Winkler C, Shimohara T, King CR, Inana G, Piatigorsky J, Gold RJ (1985) Selective loss of a family of gene transcript in a hereditary murine cataract. Science 227:74–77Google Scholar
  10. Giallongo A, Feo S, Moore M, Croce CM, Showe LC (1986) Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci 83:6741–6745Google Scholar
  11. Giallongo A, Oliva D, Cali L, Barba G, Barbieri G, Feo S (1990) Structure of the human gene for α-enolase. Eur J Biochem 190:567–573Google Scholar
  12. Gitzelmann R (1967) Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts. Pediatr Res 1:14–23Google Scholar
  13. Gyapay G, Morissette J, Vignal A, Dip C, Fizames C, Millasseaun P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–1994 Généthon human genetic linkage map. Nature Genet 7:246–339Google Scholar
  14. Harley JD, Irvine S, Mutton P, Gupta JD (1971) Maternal enzymes of galactose metabolism and the ‘inexplicable’ infantile cataract. Lancet II:259–261Google Scholar
  15. Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam OxfordGoogle Scholar
  16. Hinks LJ, Day INM (1991) Further studies of endolase loci. Cytogen Cell Genet 58:1854PubMedGoogle Scholar
  17. Huang Q, Du X, Stone SH, Amsbaugh DF, Datiles M, Hu T, Zigler JS (1990) Association of hereditary cataracts in strain 13/N guinea-pigs with mutation of the gene for zeta-crystallin. Exp Eye Res 50:317–325Google Scholar
  18. Jensen S, Goldschmidt E (1971) Genetic counseling in sporadic cases of congenital cataract. Acta Ophthalmol 49:572–576Google Scholar
  19. Lachant NA, Jennings MA, Tanaka KR (1986) Partial erythrocyte enolase deficiency: a hereditary disorder with variable clinical expression. Blood 68:55aGoogle Scholar
  20. Lathrop GM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465Google Scholar
  21. Lubsen NH, Renwick, JH, Schoenmakers JGG (1986) Hereditary cataract: perspective for prenatal screening. Ophthalmic Paediatr Genet 7:195–200Google Scholar
  22. Lund AM, Eiberg H, Rosenberg T, Warburg M (1992) Autosomal dominant congenital cataract; linkage relations; clinical and genetic heterogeneity. Clin Genet 41:65–69Google Scholar
  23. McKusick VA (1992) Mendelian inheritance in man, 10th edn. The Johns Hopkins University Press, Baltimore London, p 806Google Scholar
  24. Moross T, Vaithilingam SS, Styles S, Gardner HA (1984) Autosomal dominant anterior polar cataracts associated with a familial 2;14 translocation. J Med Genet 21:52–53Google Scholar
  25. Reese PD, Truck-Muller CM, Maumenee IH (1987) Autosomal dominant congenital cataract associated with chromosomal translocation [t (3;4) (p26.2;p15)]. Arch Ophthalmol 105:1382–1384Google Scholar
  26. Renwick JH, Lawler SD (1963) Probable linkage between a congenital cataract locus and the Duffy blood group locus. Ann Hum Genet 27:67–84Google Scholar
  27. Simonelli F, Cotticelli L, Russo SD, Meo A, Rinaldi E (1987) Galactose-1-P-uridyl transferase activity in patients with congenital and infantile cataract. Ophthalmic Paediatr Genet 8:187–190Google Scholar
  28. Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359:794–801Google Scholar
  29. Wistow GJ, Lietman T, Williams LA, Stapel SO, DeJong WW, Horwitz J, Piatigorsky J (1988) Tau-chrystallin/alpha-enolase: one gene encodes both an enzyme and a lens structural protein. J Cell Biol 107:2729–2736Google Scholar
  30. Yokoyama Y, Narahara K, Tsuji K, Ninomiya S, Seino Y (1992) Autosomal dominant congenital cataract and microphthaimia associated with a familial t(2;16) translocation. Hum Genet 90:177–178Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Hans Eiberg
    • 1
  • Allan Meldgaard Lund
    • 2
  • Mette Warburg
    • 3
  • Thomas Rosenberg
    • 4
  1. 1.Department of Medical Genetics B24.4, Genome Group, Danish Centre for Genome ResearchUniversity Institute of Medical Biochemistry & GeneticsDenmark
  2. 2.Department of Pediatrics, Division of Clinical GeneticsUniversity HospitalCopenhagenDenmark
  3. 3.Division of Pediatric Opthalmology and HandicapsHerlev HospitalDenmark
  4. 4.National Eye Clinic for the Visually ImpairedHellerupDenmark

Personalised recommendations