Advertisement

Cell and Tissue Research

, Volume 222, Issue 3, pp 605–614 | Cite as

Evidence for the presence of osseous tissue in dogfish vertebrae

  • J. Peignoux-Deville
  • F. Lallier
  • B. Vidal
Article

Summary

The calcified cartilage of the dogfish vertebra has been studied by means of an undecalcified hard tissue method, including microradiography and tetracycline labelling, and electron microscopy. The transversely sectioned vertebra shows a centrum and neural and hemal arches. The mineralized area consists of a narrow but continuous band, which touches the perichondrium, and is formed by chondrocytes that participate in the mineralization of the surrounding matrix. The neural arches appear quite different; the upper parts contain an hypertrophied cartilage and, close to it, an inner zone formed by crescent shaped lamellar bone tissue containing osteoblasts and osteocytes. Tetracycline labelling of these two types of hard tissue reveals a globular calcification with calcospherites and Liesegang rings, at the level of the calcified cartilage, and a strong and linear label of the inner border of the osseous tissue. Transmission electron microscopy shows Type I collagen in the crescent shape area and Type II collagen in calcified cartilage area. The presence of osseous tissue in elasmobranch endoskeleton is discussed in relation to the evolution of the gnathostomes skeleton and the endocrinological control of calcium metabolism.

Key words

Elasmobranch Endoskeleton Osseous tissue Osteoblasts Osteocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate SP (1967) A survey of shark hard part. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates, and rays. The Johns Hopkins Press, Baltimore:37–67Google Scholar
  2. Bargmann W (1939) Zur Kenntnis der Knorpelarchitekturen (Untersuchungen am Skeletsystem von Selachiern). Z Zellforsch 29:405–424Google Scholar
  3. Baud CA (1957) Radiographies et microradiographies osseuses quantitatives. Praxis 46:329–331Google Scholar
  4. Baud CA, Morgenthaler PW (1952) Recherches sur l'ultrastructure de l'os humain fossile. Arch Suisses d'Anthropol Gen 17:52–65Google Scholar
  5. Boyde A, Hobdell MH (1969) Scanning electron microscopy of primary membrane bone. Z Zellforsch 99:98–108Google Scholar
  6. Boyde A, Jones SJ (1968) Scanning electron microscopy of cememtum and Sharpey fiber bone. Z Zellforsch 92:536–548Google Scholar
  7. Engström A, Wegstedt L (1951) Equipment for microradiography with soft Röntgen rays. Acta Radiol (Ther) (Stockh) 35:345–355Google Scholar
  8. Fontaine M, Baud CA, Chartier-Baraduc MM, Deville J, Lopez E (1974) De quelques particularités du métabolisme du calcium chez les Scaridés des îles Gambier. Cahiers du Pacifique, n∘ 18, tome II, pp 579–584Google Scholar
  9. Frost HM (1959) Staining of fresh, undecalcified, thin bone sections. Stain Technol 34:135–146Google Scholar
  10. Grüneberg H, Lee AJ (1973) The anatomy and development of brachypodism in the mouse. J Embryol Exp Morphol 30:119–141Google Scholar
  11. Hübner H (1961) Die Wirbelsäule des Karpfens (Cyprinus carpio). Z Fish 10:429–505Google Scholar
  12. Kemp ME, Westrin SK (1979) Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks. J Morphol 160:75–102Google Scholar
  13. Lopez E, Peignoux-Deville J, Lallier F, Martelly E, Milet C (1976) Effects of calcitonin and ultimobranchialectomy (UBX) on calcium and bone metabolism in the eel, Anguilla anguilla L. Calcif Tissue Res 20:173–186Google Scholar
  14. Meunier FJ (1979) Etude histologique et microradiographique du cartilage hémal de la vertèbre de la carpe, Cyprinus carpio L. (Pisces, Teleostei, Cyprinidae). Acta Zool (Stockh) 60:19–31Google Scholar
  15. Miles RS, Moy-Thomas JA (1971) Palaeozoic fishes. 2nd Ed. Chapman and Hall, LondonGoogle Scholar
  16. Moss ML (1970) Enamel and bone in shark teeth: with a note on fibrous enamel in fishes. Acta Anat 77:161–187Google Scholar
  17. Moss ML (1977) Skeletal tissues in sharks. Am Zool 17:335–342Google Scholar
  18. Ørvig T (1951) Histologic studies of placoderms and fossil elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2:321–454Google Scholar
  19. Peignoux-Deville J, Milet C, Martelly E (1978) Effets de l'ablation du corps ultimobranchial et de la perfusion de calcitonine sur les flux de calcium au niveau des branchies de l'Anguille (Anguilla anguilla L.). Ann Biol Anim Bioch Biophys 18(1):119–126Google Scholar
  20. Romer AS (1945) Vertebrate paleontology. The University of Chicago Press, ChicagoGoogle Scholar
  21. Shimomura Y, Yomeda T, Suzuki F (1975) Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res 19:178–188Google Scholar
  22. Simmons DJ, Simmons NB, Marshall JH (1970) The uptake of calcium 45 in the acellular-boned toadfish. Calcif Tissue Res 5:206–221Google Scholar
  23. Urist M (1961) Calcium and phosphorus in the blood and skeleton of the elasmobranchii. Endocrinology 69:778–801Google Scholar
  24. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408CrossRefPubMedGoogle Scholar
  25. Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56Google Scholar
  26. Wurmbach H (1932) Das Wachstum des Selachierwirbels und seiner Gewebe. Zool Jahrb (Abt Anat Ent Tier) 55:1–136Google Scholar
  27. Zangerl R (1966) A new shark of the family edestidae, Ornithoprion hertwigi. Fieldiana-Geal 16:1–43Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. Peignoux-Deville
    • 1
  • F. Lallier
    • 1
  • B. Vidal
    • 1
  1. 1.Laboratoire de Physiologie générale et comparée du Muséum et d'Endocrinologie comparée, associé au C.N.R.S.ParisFrance

Personalised recommendations