Cell and Tissue Research

, Volume 232, Issue 2, pp 295–317 | Cite as

Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L)

  • M. El-Salhy
  • S. Falkmer
  • K. J. Kramer
  • R. D. Speirs


In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain.

The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, α-and β-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6–13), cholecystokinin (CCK) mid-portion (sequences 9–20 and 9–25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin.

All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.

Key words

Insect brain Corpus cardiacum/corpus allatum Neuropeptides Immunohistochemistry Tobacco hornworm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alumets J, Håkanson R, Sundler F, Thorell J (1979) Neuronal localization of immunoreactive enkephalin and β-endorphin in the earthworm. Nature 279:805–806PubMedGoogle Scholar
  2. Bell RA, Joachim FG (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Amer 69:365–373Google Scholar
  3. Benedeczky I, Kiss JZ, Somogyi P (1982) Light and electronmicroscopic localization of substance P-like immunoreactivity in the cerebral ganglion of locust with a monoclonal antibody. Histochemistry 75:123–131PubMedGoogle Scholar
  4. Blundell TL, Humbel RE (1980) Hormone families: Pancreatic hormones and homologous growth factors. Nature 287:781–787PubMedGoogle Scholar
  5. Buehner TS, Nettleton GS, Longley JB (1979) Staining properties of aldehyde fuchsin analogs. J Histochem Cytochem 27:782–787PubMedGoogle Scholar
  6. Buffa R, Grivelli O, Fiocca R, Fontana P, Solcia E (1979) Complement-mediated unspecific binding of immunoglobulins to some endocrine cells. Histochemistry 63:15–21PubMedGoogle Scholar
  7. Doerr-Schott J, Joly L, Dubois MP (1978) Sur l'existence dans la pars intercerebralis d'un insecte (Locusta migratoria R et F) de cellules neurosécrétrices fixant un antisérum antisomatostatin. C R Acad Sci 206:93–95Google Scholar
  8. Duve H, Thorpe A (1979) Immunofluorescent localization of insulin-material in the median neurosecretory cells of the blowfly, Calliphora vomitoria (Diptera). Cell Tissue Res 200:187–191PubMedGoogle Scholar
  9. Duve H, Thorpe A (1980) Localization of pancreatic polypeptide (PP)-like immunoreactive material in neurons of the brain of the blowfly, Calliphora erythrocephala (Diptera). Cell Tissue Res 210:101–109PubMedGoogle Scholar
  10. Duve H, Thorpe A (1981) Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen Comp Endocrinol 43:381–391PubMedGoogle Scholar
  11. Duve H, Thorpe A (1982) Vertebrate-type brain/gut peptides in the brain of the blowfly, Calliphora vomitoria: Immunocytochemical localisation of α-endorphin-like peptide. Gen Comp Endocrinol 46:371 (Abstract)Google Scholar
  12. Duve H, Thorpe A, Lazarus NR (1979) The isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly, Calliphora vomitoria. Biochem J 184:221–227PubMedGoogle Scholar
  13. Duve H, Thorpe A, Neville R, Lazarus NR (1981) Isolation and partial characterization of pancreatic polypeptide-like material in the brain of the blowfly, Calliphora vomitoria. Biochem J 197:767–770PubMedGoogle Scholar
  14. El-Salhy M (1981a) On the phylogeny of the gastro-entero-pancreatic (GEP) neuroendocrine system. Acta Univ Upsal 385:1–39Google Scholar
  15. El-Salhy M (1981b) Immunohistochemical localization of pancreatic polypeptide (PP) in the brain of the larval instar of the hoverfly, Eristalis aeneus (Diptera). Experientia 37:1009Google Scholar
  16. El-Salhy M, Abou-El-Ela R, Falkmer S, Grimelius L, Wilander E (1980) Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aeneus. Regul Peptides 1:187–204Google Scholar
  17. El-Salhy M, Falkmer S, Kramer KJ (1982) The brain of the tobacco hornworm, Manduca sexta, as a neuro-endocrine organ. — A clue to the evolution of the diffuse neuroendocrine system. Abstract 4th Internat Sympos Gastrointest Horm, Stockholm, June 20–23, 1982, p 59 (Abstract)Google Scholar
  18. Falkmer S, Carraway RE, El-Salhy M, Emdin SO, Grimelius L, Rehfeld JF, Reinecke M, Schwartz TFW (1980a) Phylogeny of the GEP neuroendocrine system. A review. UCLA Forum Med Sci 23:21–42Google Scholar
  19. Falkmer S, Ebert R, Arnold R, Creutzfeldt W (1980b) Some phylogenetic aspects on the enteroinsular axis with particular regard to the appearance of the gastric inhibitory polypeptide. Front Horm Res 7:1–6Google Scholar
  20. Falkmer S, Emdin SO (1981) Insulin evolution. In: Dodson G, Glusker JP, Sayre D (eds) Structural studies of molecules of biological interest. Oxford Univ Press, Oxford, pp 420–440Google Scholar
  21. Falkmer S, Van Noorden S (1983) Ontogeny and phylogeny of the glucagon cell. Chapter 5 in: Born GVR, Farah A, Herken H, Welch AD (eds) Handbuch der experimentellen Pharmakologie; vol 66/I, Lefebvre PJ (ed) Glucagon, Springer Verlag, Heidelberg, pp 81–119Google Scholar
  22. Grimelius L, Wilander E (1980) Silver stains in the study of endocrine cells in the gut and pancreas. Invest Cell Path 3:3–12Google Scholar
  23. Grimmelikhuijzen CJP, Dockray GJ, Yanaihara N (1981) Bombesin-like immunoreactivity in the nervous system of hydra. Histochemistry 73:171–180PubMedGoogle Scholar
  24. Gros C, Lafon-Cazal M, Dray F (1978) Présence de substances immunoréactivement apparentées aux enképhalines chez un insecte, Locusta migratoria. C R Acad Sci 287:647–650Google Scholar
  25. Hansen BL, Hansen GN, Scharrer B (1982) Immunoreactive material resembling vertebrate neuropeptides in the corpus cardiacum and corpus allatum of the insect Leucophaea maderae. Cell Tissue Res 225:319–329PubMedGoogle Scholar
  26. Imagawa K, Nishino T, Shin S, Uehata S, Hashimura E, Yanaihara C, Yanaihara N (1979) Production of antiglucagon sera with a C-terminal fragment of pancreatic glucagon. Endocrinol Jap 26:123–131Google Scholar
  27. Kramer KJ (1983) Vertebrate hormones in insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 7: Endocrinology I, Pergamon Press, Oxford, (in press)Google Scholar
  28. Kramer KJ, Speirs RD, Childs CN (1977) Immunochemical evidence for a gastrin-like peptide in insect neuroendocrine system. Gen Comp Endocrinol 32:423–426PubMedGoogle Scholar
  29. Kramer KJ, Tager HS, Childs CN (1980) Insulin-like and glucagon-like peptides in insect haemolymph. Insect Biochem 10:179–182Google Scholar
  30. Kramer KJ, Childs CN, Speirs RD, Jacobs RM (1982) Purification of insulin-like peptides from insect haemolymph and royal jelly. Insect Biochem 12:91–98Google Scholar
  31. Lane NJ (1974) The organization of insect nervous system. In: Treherne JE (ed) Insect neurobiology, vol 35. Neuberger A, Tatum EL (eds) Frontiers biol. North-Holland Publ, Amsterdam, pp 1–71Google Scholar
  32. Le Roith D, Lesniak MA, Roth J (1981) Insulin in insects and annelids. Diabetes 30:70–76PubMedGoogle Scholar
  33. Martin G, Dubois MP (1981) A somatostatin-like antigen in the nervous system of an isopod Porcellio dilatatus Brandt. Gen Comp Endocrinol 45:125–130PubMedGoogle Scholar
  34. Martin R, Frösch D, Weber E, Voigt KH (1979) Met-enkephalin-like immunoreactivity in a cephalopod neurohemal organ. Neurosci Lett 15:253–257PubMedGoogle Scholar
  35. Rémy C, Dubois MP (1979) Localization par immunofluorescence de peptides analogues à l'α-endorphine dans les ganglions infra-oesophagiens du lombricide, Dendrobaena subrubicunda Eisen. Experientia 35:137–138Google Scholar
  36. Rémy C, Dubois MP (1981) Immunohistological evidence of methionine-enkephalin-like material in the brain of the migratory locust. Cell Tissue Res 218:271–278PubMedGoogle Scholar
  37. Rémy C, Girardie J, Dubois MP (1978) Présence dans le ganglion sous-oesophagien de la chenille processionaire du pin (Thaumetopoea pityocampa Schiff) de cellules révélèes en immunofluorescence par un anticorps anti-α-endorphine. C R Acad Sci 286:651–653Google Scholar
  38. Rémy C, Girardie J, Dubois MP (1979) Vertebrate neuropeptide-like substances in the suboesophageal ganglion of two insects, Locusta migratoria R and F (Orthoptera) and Bombyx mori L (Lepidoptera). Immunohistochemical investigation. Gen Comp Endocrinol 37:93–100PubMedGoogle Scholar
  39. Sabesan MN (1980) Secondary structural and active site homologies between nerve growth factor and insulin. J Theoret Biol 83:469–476Google Scholar
  40. Scharrer B (1983) Neurosecretion — The development of a concept. Proc 9th Internat Symp Comp Endocr, held in Hong Kong, Dec 7–11, 1981, B Lofts (ed) Hong Kong Univ Press (in press)Google Scholar
  41. Scharrer E, Scharrer B (1937) Über Drüsennervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol Rev Cambr Phil Soc 12:185–216Google Scholar
  42. Schot LPC, Boer HH, Swaab EF, Van Noorden S (1981) Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail, Lymnaea stagnalis, with antisera raised to biologically active peptides of vertebrates. Cell Tissue Res 216:273–291PubMedGoogle Scholar
  43. Stefano GB, Scharrer B (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria). Brain Res 225:107–114PubMedGoogle Scholar
  44. Sternberger LA (1979) Immunocytochemistry, 2nd ed, John Wiley & Sons, New York, pp 1–354Google Scholar
  45. Sundler F, Håkanson R, Alumets J, Walles B (1977) Neuronal localization of pancreatic polypeptide (PP) and vasoactive intestinal peptide (VIP) immunoreactivity in the earthworm (Lumbricus terrestris). Brain Res Bull 2:61–65PubMedGoogle Scholar
  46. Tager HS, Kramer KJ (1980) Insect glucagon-like peptides: Evidence for a high molecular weight form in midgut from Manduca sexta (L.). Insect Biochem 10:617–619Google Scholar
  47. Tager HS, Markese J, Kramer KJ, Speirs RD, Childs CW (1976) Glucagon-like and insulin-like hormones of the insect neurosecretory system. Biochem J 156:515–520PubMedGoogle Scholar
  48. Tatemoto K, (1982a) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl. Acad. Sci (USA) 79:2514–2518Google Scholar
  49. Tatemoto K (1982b) Neuropeptide Y: Complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci (USA) 79:5485–5489Google Scholar
  50. Van Noorden S, Falkmer S (1980) Gut-islet endocrinology. Some evolutionary aspects. Invest Cell Pathol 3:21–36PubMedGoogle Scholar
  51. Van Noorden S, Fritsch HAR, Grillo TAI, Polak JM, Pearse AGE (1980) Immunocytochemical staining for vertebrate peptides in the nervous system of a gastropod mollusc. Gen Comp Endocrinol 40:375–376Google Scholar
  52. Yui R, Fujita T, Ito S (1980) Insulin-, gastrin-, pancreatic-polypeptide-like immunoreactive neurons in the brain of the silkworm, Bombyx mori. Biomed Res 1:42–46Google Scholar
  53. Zipser B (1980) Identification of specific leech neurons immunoreactive to enkephalin. Nature 283:857–858PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. El-Salhy
    • 1
  • S. Falkmer
    • 2
  • K. J. Kramer
    • 3
  • R. D. Speirs
    • 3
  1. 1.Department of PathologyUniversity of UppsalaSweden
  2. 2.Department of PathologyUniversity of Lund, Malmö General HospitalMalmöSweden
  3. 3.U.S. Department of AgricultureU.S. Grain Marketing Research Laboratory, Agricultural Research ServiceManhattanUSA

Personalised recommendations