Advertisement

Cell and Tissue Research

, Volume 235, Issue 1, pp 99–106 | Cite as

“Seamless” endothelial cells of blood capillaries

  • Th. Bär
  • F. -H. Güldner
  • J. R. Wolff
Article

Summary

The distribution and number of seamless endothelial cells (SE) were studied in various organs and tissues of rats, rabbits and humans (1) by light microscopy after silver impregnation of the endothelial cell boundaries, (2) by electron microscopy, and (3) in three-dimensional reconstructions of duodenal villi and renal glomeruli. Since SE are situated mostly at branching points, the number of SE is roughly correlated to the number of branchings in the capillary system concerned. SE make up about 50% of all endothelial cells in the renal glomerulum and duodenal villi, and about 30% in the cerebral cortex. However, they rarely occur in bradytrophic tissues. SE have been found exclusively in net capillaries (true capillaries). They seem to be absent in most arterio-venous capillaries (capillary parts of thoroughfare channels), in the capillaries of endocrine glands, as well as in the sinusoidal systems of heart muscle, liver, spleen and bone marrow. It is concluded that SE are developed when tube formation is confined to a single endothelial cell. SE are intercalated most frequently in those capillaries that develop lastly in the terminal vascular bed. The seamless segments are canalized by fusion of intraendothelial vacuoles with pre-existing vascular walls. The existence of SE, confirming the dual structural design of capillary systems, may be used as a detector for net capillaries.

Key words

Capillaries Seamless endothelial cells Organotypic microvascular patterns Rat, rabbit, man 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allsopp G, Gamble HJ (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J Anat 128:155–168Google Scholar
  2. Ashton N, Tripathi B, Knight G (1972) Effect of oxygen on the developing retinal vessels of the rabbit. I. Anatomy and development of the retinal vessels of the rabbit. Exp Eye Res 14:214–221Google Scholar
  3. Bär Th (1980) The vascular system of the cerebral cortex. Changes during ontogenesis, aging, and oxygen deprivation. Adv Anat Embryol Cell Biol 59:Google Scholar
  4. Bennett HS, Luft JH, Hampton JC (1959) Morphological classification of vertebrate blood capillaries. Am J Physiol 196:381–390Google Scholar
  5. Bertossi M, Roncali L (1981) Ultrastructural changes of the developing blood vessels in the chick embryo adenohypophysis. J Submic Cy 13:391–406Google Scholar
  6. Bremer H (1958) Das Dottergefäß beim Hühnchen als Beispiel einer Strukturentwicklung. Roux' Arch Entw Mech 152:702–723Google Scholar
  7. Cammermeyer J (1965) Cerebral intervascular Strands of connective tissue as routes of transportation. Anat Rec 151:251–260Google Scholar
  8. Campbell GR, Uehara Y (1972) Formation of fenestrated capillaries in mammalian vas deferens and ureter transplants. Z Zellforsch 134:167–173Google Scholar
  9. Clark ER, Clark EL (1939) Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64:251–301Google Scholar
  10. Cliff WJ (1963) Observation on healing tissue. A combined light and electron microscopic investigation. Philos Trans R Soc 246:305–325Google Scholar
  11. David S, Nathaniel EJ (1981) Development of brain capillaries in euthyroid and hypothyroid rats. Exp Neurol 73:243–253Google Scholar
  12. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556Google Scholar
  13. Güldner FH, Wolff JR (1973) Seamless endothelia as indicators of capillaries developed from sprouts. Bibl Anat 12:120–123Google Scholar
  14. Guseo A, Gailyas F (1974) Intercapillary bridges and the development of brain capillaries. In: Cervós-Navarro J (ed) Pathology of cerebral microcirculation. Walter de Gruyter, Berlin, New York, pp 448–453Google Scholar
  15. Hammersen F (1971) Anatomie der terminalen Strombahn. Muster — Feinbau — Funktion. Urban und Schwarzenberg, München Berlin WienGoogle Scholar
  16. Illig L (1961) Die terminale Strombahn. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  17. Kisch B (1957) Der ultramikroskopische Bau von Herz und Kapillaren. Steinkopff, DarmstadtGoogle Scholar
  18. Lipowski HH, Zweifach BW (1974) Network analysis of microcirculation of cat mesentery. Microvasc Res 7:73–83Google Scholar
  19. Lunkenheimer PP, Merker HJ (1973) Morphologische Studien zur funktionellen Anatomie der “Sinusoide” im Myocard. Z Anat Entw Gesch 142:65–90Google Scholar
  20. Majno G (1965) Ultrastructure of the vascular membrane. In: Hamilton WF, Dow P (eds) Handbook of physiology. Sect 2 Circulation, vol II, pp 2293Google Scholar
  21. Oldendorf WH, Cornford ME, Brown WJ (1981) Some unique ultrastructural characteristics of rat brain capillaries. In: Cervós-Navarro J, Fritschka E (eds) Cerebral microcirculation and metabolism. Raven Press, New York, pp 9–15Google Scholar
  22. Oštádal B, Rychter Z, Poupa O (1970) Comparative aspects of the development of the terminal vascular bed in the myocardium. Physiol Bohemoslov 19:1–7Google Scholar
  23. Reale E, Ruska H (1965) Die Feinstruktur der Gefäßwand. Angiologica 2:314–366Google Scholar
  24. Rhodin JAG (1962) Fine structure of vascular walls in mammals. Physiol Rev 42 Suppl 5, 11:48–81Google Scholar
  25. Rhodin JAG (1968) Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 25:452–500Google Scholar
  26. Schoefl GI (1963) Studies on inflammation. III. Growing capillaries: their structure and permeability. Virchows Arch 337:97Google Scholar
  27. Simon G (1966) Ultrastructure des capillaires, Kap. II. Angiologica 2:370–434Google Scholar
  28. Sinapius D (1956) Über Grundlagen und Bedeutung der Vorversilberung und verwandter Methoden nach Untersuchungen am Aortenendothel. Z Zellforsch 44:27–56Google Scholar
  29. Uehara Y, Campbell GR, Burnstock G (1976) Muscle and its innervation. An atlas of fine structure. Edward Arnold, LondonGoogle Scholar
  30. Vobořil Z, Schiebler TH (1970) Zur Gefäßversorgung des Schildkrötenherzens. Z Anat Entw Gesch 130:95–100Google Scholar
  31. Vracko R, Benditt EP (1972) Basal lamina: The scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 55:406–419Google Scholar
  32. Wolff J (1964) Ein Beitrag zur Ultrastruktur der Blutkapillaren: Das nahtlose Endothel. Z Zellforsch 64:290–300Google Scholar
  33. Wolff J (1966) Elektronenmikroskopische Untersuchungen über die Vesikulation im Kapillarendothel. Lokalisation, Variation und Fusion der Vesikel. Z Zellforsch 73:143–164Google Scholar
  34. Wolff J (1967) On the meaning of vesiculation in capillary endothelium. Angiologica 4:64–68Google Scholar
  35. Wolff JR, Bär Th (1972) ‘Seamless’ endothelia in brain capillaries during development of the rat's cerebral cortex. Brain Res 41:17–24Google Scholar
  36. Wolff J, Merker HJ (1966) Ultrastruktur und Bildung von Poren im Endothel von porösen und geschlossenen Kapillaren. Z Zellforsch 73:174–191Google Scholar
  37. Wolff JR, Moritz A, Güldner FH (1972) ‘Seamless’ endothelia with fenestrated capillaries of duodenal villi (rat). Angiologica 9:11–14Google Scholar
  38. Wolff JR, Goerz Ch, Bär Th, Güldner FH (1975) Common morphometric aspects of various organotypic microvascular patterns. Microvasc Res 10:373–395Google Scholar
  39. Zweifach BW (1939) The character and distribution of the blood capillaries. Anat Rec 73:475–495Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Th. Bär
    • 1
  • F. -H. Güldner
    • 1
    • 2
  • J. R. Wolff
    • 1
    • 3
  1. 1.Max-Planck-Institute for System PhysiologyDortmundFederal Republic of Germany
  2. 2.Department of AnatomyMonash UniversityMelbourneAustralia
  3. 3.Department of AnatomyUniversity of GöttingenGöttingenFederal Republic of Germany

Personalised recommendations