Journal of Comparative Physiology A

, Volume 173, Issue 3, pp 293–300 | Cite as

The halteres of the blowfly Calliphora

I. Kinematics and dynamics
  • G. Nalbach


The movement of the halteres during fixed flight was video recorded under stroboscopic illumination phase coupled to the wing beat. The halteres swing in a rounded triangular manner through an angle of almost 80° in vertical planes tilted backwards from the transverse plane by ca. 30° (Figs. 1, 2).

The physics of the halteres are described in terms of a general formula for the force acting onto the endknob of the moving haltere during rotations and linear accelerations of the fly (Eq. 1). On the basis of the experimentally determined kinematics of the haltere, the primary forces and the forces dependent on angular velocity and on angular acceleration are calculated (Figs. 3, 4).

Three distinct types of angular velocity dependent (Coriolis) forces are generated by rotations about 3 orthogonal axes. Thus, in principle one haltere could detect all rotations in space (Fig. 6).

The angular acceleration dependent forces have the same direction and frequency as the Coriolis forces, but they are shifted in phase by 90°. Thus, they could be evaluated in parallel and independently from the Coriolis forces. They are, however, much smaller than the Coriolis forces for oscillation frequencies of the fly up to 20 Hz (Fig. 5). From these considerations it is concluded that Coriolis forces play the major role in detecting body rotations.

Key words

Calliphora Insect flight Haltere Wing Flight control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Demoll R (1918) Der Flug der Insekten und der Vögel. Gustav Fischer, JenaGoogle Scholar
  2. Derham W (1711) Physico-Theology. London 1711–1712Google Scholar
  3. Faust R (1952) Untersuchungen zum Halterenproblem. Zool Jahrb Physiol 63:325–366Google Scholar
  4. Fraenkel G (1939) The function of the halteres of flies. Proc Zool Soc Lond A 109:69–78Google Scholar
  5. Fraenkel G, Pringle JWS (1938) Halteres of flies as gyroscopic organs of equilibrium. Nature 141:919–921Google Scholar
  6. Giliomee JH (1967) Morphology and taxonomy of adult males of the family Coccidae (Homoptera: Coccidae). Bull Brit Mus Entomol Suppl 7Google Scholar
  7. Gnatzy W, Grünert U, Bender M (1987) Campaniform sensilla of Calliphora vicina (Inserta, Diptera). I. Topography. Zoomorphology 106:312–319Google Scholar
  8. Hengstenberg R (1984) Roll-stabilization during flight of the blowfly's head and body by mechanical and visual cues. In: Varjú D, Schnitzler HU (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 121–134Google Scholar
  9. Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165Google Scholar
  10. Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227:455–482Google Scholar
  11. Hirth C (1981) Elektrophysiologische Untersuchungen über die Bildung der Impulsmuster in den neuromotorischen Systemen nicht-fibrillärer Flugmuskeln von Schmeißfliegen (Calliphora). Dissertation, Universität DüsseldorfGoogle Scholar
  12. Miller PL (1971) The possible stabilizing function of the elytra of Atractocerus brevicornis (L.) (Lymexylidae: Coleoptera) in flight. The Entomologist 104:105–110Google Scholar
  13. Nalbach G (1985) Die Haltere als Drehsinnesorgan. Zulassungsarbeit für das Staatsexamen, Universität TübingenGoogle Scholar
  14. Nalbach G (1988) Linear oscillations elicit haltere mediated turning illusions and entrainment in the blowfly Calliphora. Proc Göttingen Neurobiol Conf 16:131Google Scholar
  15. Nalbach G (1989) The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. J Comp Physiol A 165:321–331Google Scholar
  16. Nalbach G (1991) Verhaltensuntersuchungen zur Funktion der Halteren bei der Schmeißfliege Calliphora erythrocephala mit echten und simulierten Drehreizen. Dissertation, Universität TübingenGoogle Scholar
  17. Nalbach G, Hengstenberg R (1986) Die Halteren von Calliphora als Drehsinnesorgan. Verh Dtsch Zool Ges 79:229Google Scholar
  18. Pflugstaedt H (1912) Die Halteren der Dipteren. Z Wiss Zool 100:1–59Google Scholar
  19. Pix W, Nalbach G, Zeil J (1992) The forewings of male Strepsiptera are haltere-like organs of equilibrium. Proc 20th Göttingen Neurobiol Conf, 175Google Scholar
  20. Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Phil Trans R Soc Lond B 233:347–384Google Scholar
  21. Pringle JWS (1957) Insect flight. Cambridge University Press, LondonGoogle Scholar
  22. Sandeman DC (1980) Angular acceleration, compensatory head movements and the halteres of flies (Lucilia sericata). J Comp Physiol 136:361–367Google Scholar
  23. Schneider G (1953) Die Halteren der Schmeißfliege (Calliphora) als Sinnesorgane und als mechanische Flugstabilisatoren. Z Vergl Physiol 35:416–458Google Scholar
  24. Thurm U, Stedtler A, Foelix R (1974) Reizwirksame Verformungen der Terminalstrukturen eines Mechanorezeptors. Verh Dtsch Zool Ges 67:37–41Google Scholar
  25. Tracey D (1975) Head movements mediated by halteres in the fly (Musca domestica). Experientia 31:44–45Google Scholar
  26. Ulrich W (1930) Die Strepsipteren-Männchen als Insekten mit Halteren anstelle der Vorderflügel. Z Morphol Ökol Tiere 17:552–624Google Scholar
  27. Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Weinland E (1891) Über die Schwinger (Halteren) der Dipteren. Z Wiss Zool 51:55–166Google Scholar
  29. Weismann A (1864) Die nachembryonale Entwicklung der Musciden nach Beobachtungen an Musca vomitoria und Sarcophaga carnaria. Z Wiss Zool 14:187–336Google Scholar
  30. Wigglesworth VB (1946) Organs of equilibrium in flying insects. Nature 157:655Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. Nalbach
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations