Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue

  • R. Kramell
  • R. Atzorn
  • G. Schneider
  • O. Miersch
  • C. Brückner
  • J. Schmidt
  • G. Sembdner
  • B. Parthier


The effect of osmotically active substances on the alteration of endogenous jasmonates was studied in barley (Hordeum vulgare L. cv. Salome) leaf tissue. Leaf segments were subjected to solutions of d-sorbitol, d-mannitol, polyethylene glycol 6000, sodium chloride, or water as a control. Alterations of endogenous jasmonates were monitored qualitatively and quantitatively using immunoassays. The structures of jasmonates isolated were determined on the basis of authentic substances by capillary gas chromatography-mass spectrometry. The stereochemistry of the conjugates was confirmed by high performance liquid chromatography with diastereoisomeric references. In barley leaves, jasmonic acid and its amino acid conjugates, for example, with valine, leucine, and isoleucine, are naturally occurring jasmonates. In untreated leaf segments, only low levels of these native jasmonates were found. After treatment of the leaf tissues with sorbitol, mannitol, as well as with polyethylene glycol, an increase of both jasmonic acid and its conjugates could be observed, depending on the stress conditions used. In contrast, salt stress was without any stimulating effect on the levels of endogenous jasmonates. From barley leaf segments exposed to sorbitol (1m) for 24 h, jasmonic acid was identified as the major accumulating compound. Jasmonic acid-amino acid conjugates increased likewise upon stress treatment.


Jasmonic Acid Methyl Jasmonate HOAc Barley Leave Amino Acid Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



methyl jasmonate


jasmonic acid


jasmonate-induced protein(s)


polyethylene glycol




enzyme-linked immunosorbent assay


high performance liquid chromatography


gas chromatography-mass spectrometry


retention time


indole-3-acetic acid


  1. Albrecht T, Kehlen A, Stahl K, Knöfel HD, Sembdner G, Weiler EW (1993) Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191:86–94CrossRefGoogle Scholar
  2. Anderson JM, Spilatro SR, Klauer SF, Franceschi VR (1989) Jasmonic acid-dependent increase in the level of vegetative storage proteins in soybean. Plant Sci 62:45–52CrossRefGoogle Scholar
  3. Bandurski RS, Schulze A, Domagalski W (1987) Synthesis and metabolism of conjugates of indole-3-acetic acid. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones: Structure, metabolism and function. Deutscher Verlag der Wissenschaften, Berlin, pp 11–20Google Scholar
  4. Bohlmann F, Wegner P, Jakupovic J, King RM (1984) Structure and synthesis of N-(acetoxy-)jasmonoyl phenylalanine methyl ester from Praxelis clematidea. Tetrahedron 40:2537–2540CrossRefGoogle Scholar
  5. Brückner C, Kramell R, Schneider G, Knöfel H-D, Sembdner G, Schreiber K (1986) N-[(-)-Jasmonoyl]-S-tyrosine: A conjugate of jasmonic acid from Vicia faba. Phytochemistry 25:2236–2237CrossRefGoogle Scholar
  6. Bruckner C, Kramell R, Schneider G, Schmidt J, Preiss A, Sembdner G, Schreiber K (1988) N-[(-)-Jasmonoyl]-S-tryptophan and a related tryptophan conjugate from Vicia faba. Phytochemistry 27:275–276CrossRefGoogle Scholar
  7. Cohen JD (1982) Identification and quantitative analysis of indole-3-acetyl-l-aspartate from seeds of Glycine max L. Plant Physiol 70:749–753PubMedGoogle Scholar
  8. Cohen JD, Slovin JP, Bialek K (1987) Biochemical and molecular studies of native auxin conjugates. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones: Structure, metabolism and function. Deutscher Verlag der Wissenschaften, Berlin, pp 54–60Google Scholar
  9. Cross BE, Webster GRB (1970) New metabolites of Gibberella fujikuroi. XV. N-Jasmonoyl- and N-dihydrojasmonoyl-isoleucine. J Chem Soc 1839–1842Google Scholar
  10. Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean Vicia faba L. (-)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535CrossRefGoogle Scholar
  11. Epstein E, Baldi BG, Cohen JD (1986) Identification of indole-3-acetyl glutamate from seeds of Glycine max L. Plant Physiol 80:256–258PubMedGoogle Scholar
  12. Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002PubMedGoogle Scholar
  13. Gräbner R, Schneider G, Sembdner G (1976) Fraktionierung von Gibberellinen, Gibberellinkonjugaten und anderen Phytohormonen durch DEAE-Sephadex-Chromatographie. J Chromatogr 121:110–115PubMedCrossRefGoogle Scholar
  14. Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant. Proc Natl Acad Sci USA 89:2389–2393PubMedCrossRefGoogle Scholar
  15. Herrmann G, Kramell H-M, Kramell R, Weidhase RA, Sembdner G (1987) Biological activity of jasmonic acid conjugates. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones: Structure, metabolism and function. Deutscher Verlag der Wissenschaften, Berlin, 315–322Google Scholar
  16. Herrmann G, Lehmann J, Peterson A, Sembdner G, Weidhase RA, Parthier B (1989) Species and tissue specificity of jasmonate-induced abundant proteins. J Plant Physiol 134:703–709Google Scholar
  17. Knöfel HD, Brückner C, Kramell R, Sembdner G, Schreiber K (1990) Radioimmunoassay for the natural plant growth growth regulator (-)-jasmonic acid. Biochem Physiol Pflanzen 186:387–394Google Scholar
  18. Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T (1991) Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30:1435–1438CrossRefGoogle Scholar
  19. Kramell R, Schmidt J, Schneider G, Sembdner G, Schreiber K (1988) Synthesis of N-(jasmonoyl)amino acid conjugates. Tetrahedron 44:5791–5801CrossRefGoogle Scholar
  20. Lehmann J, Herrmann G, Weidhase RA, Parthier B (1990) Induction of specific polypeptides in response to leaf senescence by methyl jasmonate, a putative plant growth regulator. In: Kutacek M, Elliot MC, Machackova I (eds) Molecular aspects of hormonal regulation of plant development. Proceedings of Symposium 39 and Colloquia 30 and 31 of the 14th Biochemical Congress held in Prague, Czechoslovakia 1988, pp 241–246Google Scholar
  21. Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1994) Specific expression of endogenous jasmonate, jasmonate- and ABA-inducible transcripts and proteins in osmotically stressed barley leaf segments. Planta, submittedGoogle Scholar
  22. Mason HS, DeWald DB, Creelman RA, Mullet JE (1992) Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol 98:859–867PubMedGoogle Scholar
  23. Meyer A, Schmidt J, Gross D, Jensen E, Rudolph A, Vorkefeld S, Sembdner G (1991) Amino acid conjugates as metabolites of the plant growth regulator dihydrojasmonic acid in barley (Hordeum vulgare). J Plant Growth Regul 10:17–25CrossRefGoogle Scholar
  24. Miersch O, Preiss A, Sembdner G, Schreiber K (1987) (+)-7-iso-Jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochemistry 26:1037–1039CrossRefGoogle Scholar
  25. Money NP (1989) Osmotic pressure of aqueous polyethylene glycols: Relationship between molecular weight and vapor pressure deficit. Plant Physiol 91:766–769PubMedGoogle Scholar
  26. Müller-Uri F, Parthier B, Nover L (1988) Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in vivo and in vitro protein synthesis. Planta 176:241–247CrossRefGoogle Scholar
  27. Parthier B, Brückner C, Dathe W, Hause B, Herrmann G, Knöfel HD, Kramell HM, Kramell R, Lehmann J, Miersch O, Reinbothe S, Sembdner G, Wasternack C, zur Nieden U (1992) Jasmonates: Metabolism, biological activities, and modes of action in senescence and stress responses. In: Karssen CM, Van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation 1991. Kluwer Academic Publishers, Dordrecht, pp 276–285Google Scholar
  28. Schmidt J, Kramell R, Brückner C, Schneider G, Sembdner G, Schreiber K, Stach J, Jensen E (1990) Gas chromatographic/mass spectrometric and tandem mass spectrometric investigations of synthetic amino acid conjugates of jasmonic acid and endogenously occurring related compounds from Vicia faba L. Biomed Environ Mass Spectrum 19:327–338CrossRefGoogle Scholar
  29. Schneider G, Kramell R, Bruckner C (1989) Separation of diastereomeric amino acid conjugates of jasmonic acid. J Chromatogr 483:459–462CrossRefGoogle Scholar
  30. Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol 44:569–589CrossRefGoogle Scholar
  31. Sembdner G, Meyer A, Miersch O, Brückner C (1990) Metabolism of jasmonic acid. In: Pharis RP, Rood SB (eds) Plant growth substances 1988. Springer Verlag, Berlin, pp 374–379Google Scholar
  32. Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. In: Palme K (ed) Molecular Signal Transduction Pathways in Plants. Kluwer Academic Publishers, Dordrecht, submittedGoogle Scholar
  33. Staswick PE, Huang JF, Rhee Y (1991) Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol 96:130–136PubMedCrossRefGoogle Scholar
  34. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249PubMedGoogle Scholar
  35. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477PubMedCrossRefGoogle Scholar
  36. Weidhase RA, Kramell HM, Lehmann J, Liebisch HW, Lerbs W, Parthier B (1987) Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186CrossRefGoogle Scholar
  37. Weiler EW (1986) Plant hormone immunoassays based on monoclonal and polyclonal antibodies. In: Linsken HF, Jackson JF (eds) Immunoassays in plant sciences: Modern methods of plant analysis. New series, vol 4. Springer Verlag, Berlin, pp 1–17Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • R. Kramell
    • 1
  • R. Atzorn
    • 1
  • G. Schneider
    • 1
  • O. Miersch
    • 1
  • C. Brückner
    • 1
  • J. Schmidt
    • 1
  • G. Sembdner
    • 1
  • B. Parthier
    • 1
  1. 1.Institute of Plant BiochemistryHalle/SaaleGermany

Personalised recommendations