Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 3, pp 297–306 | Cite as

Measurement of two- and three-bond 13C−1H J couplings to the Cδ carbons of leucine residues in staphylococcal nuclease

  • Geerten W. Vuister
  • Toshimasa Yamazaki
  • Dennis A. Torchia
  • Ad Bax
Research Papers

Summary

A new 1H-detected 3D NMR experiment is described that permits quantitative measurement of two- and three-bond 13C−1H couplings in proteins with selectively 13C-enriched methyl sites. The method is demonstrated for staphylococcal nuclease selectively [5,5 13C]-labeled in all 11 leucine positions and ligated with thymidine 3′,5′-biphosphate and Ca2+. Two- and three-bond 13C methyl-proton couplings are reported and, together with the measured three-bond JCαCδ in uniformly 13C-enriched staphylococcal nuclease, the χ2- and the stereospecific assignments of the Cδ methyl group with respect to the prochiral β-protons were determined. The same residues that were previously found to have high degrees of internal mobility on the basis of 13C relaxation times have measured coupling constants that are indicative of motional averaging.

Keywords

3D NMR Long-range J coupling Carbon-carbon J coupling χ2 Torsion angle Stereospecific assignment Protein dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, S.J., Ikura, M., Torchia, D.A. and Bax, A. (1991) J. Magn. Reson., 95, 636–641.Google Scholar
  2. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1990), J. Magn. Reson., 86, 304–318.Google Scholar
  3. Bax, A., Max, D. and Zax, D. (1992) J. Am. Chem. Soc., 114, 6924–6925.Google Scholar
  4. Blake, P.R., Summers, M.F., Adams, M.W.W., Park, J.B., Zhou, Z.H. and Bax, A. (1992) J. Biomol. NMR, 2, 527–533.Google Scholar
  5. Bystrov, V.F. (1976) Progr. NMR Spectrosc., 10, 44–81.Google Scholar
  6. Chary, K.V., Otting, G. and Wüthrich, K. (1991) J. Magn. Reson., 93, 218–224.Google Scholar
  7. Edison, A.S., Westler, W.M. and Markley, J. (1991) J. Magn. Reson., 92, 434–438.Google Scholar
  8. Emerson, S.D. and Montelione, G.T. (1992) J. Magn. Reson., 99, 413–420.Google Scholar
  9. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, p 519.Google Scholar
  10. Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426–434.Google Scholar
  11. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986) J. Chem. Phys., 85, 6837–6843.Google Scholar
  12. Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. and Bax, A. (1992) J. Magn. Reson., 96, 215–221.Google Scholar
  13. Hansen, P.E. (1981) Prog. Nucl. Magn. Reson. Spectrosc., 14, 175–296.Google Scholar
  14. Harbison, G. (1993) J. Am. Chem. Soc. in press.Google Scholar
  15. Hynes, T.R. and Fox, R.O. (1991) Proteins: Struct., Funct., Genet., 10, 92–105.Google Scholar
  16. IUPAC-IUB Commission on Biochemical Nomenclature (1970) Biochemistry, 9, 3471–3479.Google Scholar
  17. James, M.N.G. and Sielecki, A.R. (1983) J. Mol. Biol., 163, 299–361.Google Scholar
  18. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  19. Kay, L.E., Bull, T.E., Nicholson, L.K., Griesinger, C., Schwalbe, H., Bax, A. and Torchia, D.A. (1992a) J. Magn. Reson., 100, 538–558.Google Scholar
  20. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992b) J. Magn. Reson., 97, 359–375.Google Scholar
  21. Loll, P.J. and Lattman, E.E. (1989) Proteins: Struct., Funct., Genet., 5, 183–201.Google Scholar
  22. London, R.E. (1990) J. Magn. Reson., 86, 410–415.Google Scholar
  23. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson. 85, 393–399.Google Scholar
  24. Montelione, G.T., Winkler, M.E., Rauenbühler, P. and Wagner, G. (1989) J. Magn. Reson., 82, 198–204.Google Scholar
  25. Müller, N., Bodenhausen, G. and Ernst, R.R. (1987) J. Magn. Reson., 75, 297–334.Google Scholar
  26. Nicholson, L.K., Kay, L.E., Baldisseri, D.M., Arango, J., Young, P.E., Bax, A. Torchia, D.A. (1992) Biochemistry, 31, 5253–5263.Google Scholar
  27. Otting, G., Wider, H., Wagner, G. and Wüthrich, K. (1986) J. Magn. Reson. 66, 187–193.Google Scholar
  28. Peng, J., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 95, 421–427.Google Scholar
  29. Sattler, M., Schwalbe, H. and Griesinger, C. (1992) J. Am. Chem. Soc., 114, 1126–1127.Google Scholar
  30. Vuister, G.W. and Bax, A. (1992) J. Biomol. NMR, 2, 401–405.Google Scholar
  31. Wider, G., Neri, D., Otting, G. and Wüthrich, K. (1989) J. Magn. Reson., 85, 426–431.Google Scholar
  32. Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.Google Scholar
  33. Zhu, G. and Bax, A. (1992), J. Magn. Reson., 100, 202–207.Google Scholar
  34. Xu, R.X., Olejniczak, E.T. and Fesik, S.W. (1992) FEBS Lett., 305, 137–143.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • Geerten W. Vuister
    • 1
  • Toshimasa Yamazaki
    • 2
  • Dennis A. Torchia
    • 2
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Bone Research Branch, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations