Advertisement

Space Science Reviews

, Volume 24, Issue 3, pp 347–366 | Cite as

Primary sources of large-scale Birkeland currents

  • Tetsuya Sato
  • Takesi Iijima
Article

Abstract

We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.

Keywords

Convection Primary Source Generation Mechanism Interplanetary Magnetic Field Magnetic Reconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.-I.: 1977, Physics of Magnetospheric Substorms, D. Reidel, Publ. Co., Dordrecht, Holland.Google Scholar
  2. Anderson, H. R. and Vondrak, R. R.: 1975, Rev. Geophys. Space. Phys. 13, 243.Google Scholar
  3. Armstrong, J. C. and Zmuda, A. J.: 1973, J. Geophys. Res. 78, 6802.Google Scholar
  4. Arnoldy, R. L.: 1974, Rev. Geophys. Space. Phys. 12, 217.Google Scholar
  5. Atkinson, G.: 1967, J. Geophys. Res. 72, 5373.Google Scholar
  6. Atkinson, G.: 1970, J. Geophys. Res. 75, 4746.Google Scholar
  7. Axford, W. I.: 1964, Planetary Space Sci. 12, 45.Google Scholar
  8. Axford, W. I. and Hines, C. O.: 1961, Can. J. Phys. 39, 1433.Google Scholar
  9. Birkeland, K.: 1908, The Norwegian Auroral Polaris Expedition 1902–1903, Vol. 1, Section 1, Ashhoug, Oslo.Google Scholar
  10. Birkeland, K.: 1913, The Norwegian Aurora Polaris Expedition 1902–1903, Vol. 1, Section 2, Aschhoug, Oslo.Google Scholar
  11. Boström, R.: 1964, J. Geophys. Res. 69, 4983.Google Scholar
  12. Boström, R.: 1975, in B. Hultqvist and L. Stenflo (eds.), Physics of the Hot Plasma in the Magnetosphere, Plenum Press, New York, pp. 341–362.Google Scholar
  13. Coroniti, F. V. and Kennel, C. F.: 1972, J. Geophys. Res. 77, 2835.Google Scholar
  14. Coroniti, F. V. and Kennel, C. F.: 1973, J. Geophys. Res. 78, 2837.Google Scholar
  15. Eviator, A. and Wolf, R. A. 1968, J. Geophys. Res. 73, 5561.Google Scholar
  16. Fairfield, D. H.: 1976, in B. M. McCormac (ed.), Magnetospheric Particles and Fields, D. Reidel, Publ. Co., Dordrecht, Holland, pp. 67–77.Google Scholar
  17. Fejer, J. A.: 1963, J. Geophys. Res. 68, 2147.Google Scholar
  18. Hasegawa, A. and Mima, K.: 1978, J. Geophys. Res. 83, 1117.Google Scholar
  19. Hasegawa, A. and Sato, T.: 1979, in S.-I. Akasofu (ed.), Dynamics of the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, pp. 529–542.Google Scholar
  20. Hayashi, T. and Sato, T.: 1978, J. Geophys. Res. 83, 217.Google Scholar
  21. Heikkila, W. J.: 1974, J. Geophys. Res. 79, 2496.Google Scholar
  22. Holtzer, T. E. and Sato, T.: 1973, J. Geophys. Res. 78, 7330.Google Scholar
  23. Iijima, T. and Potemra, T. A.: 1976a, J. Geophys. Res. 81, 2165.Google Scholar
  24. Iijima, T. and Potemra, T. A.: 1976b, J. Geophys. Res. 81, 5971.Google Scholar
  25. Iijima, T. and Potemra, T. A.: 1978, J. Geophys. Res. 83, 599.Google Scholar
  26. Iijima, T., Fujii, R., Potemra, T. A., and Saflekos, N. A.: 1978, J. Geophys. Res. 83, 5595.Google Scholar
  27. Jaggi, R. K. and Wolf, R. A.: 1973, J. Geophys. Res. 78, 2852.Google Scholar
  28. Kern, J. W.: 1962, J. Geophys. Res. 67, 2649.Google Scholar
  29. McDiarmid, I. B., Burrows, J. R., and Wilson, M. D.: 1978a, J. Geophys. Res. 83, 681.Google Scholar
  30. McDiarmid, I. B., Burrows, J. R., and Wilson, M. D.: 1978b, J. Geophys. Res. 83, 5753.Google Scholar
  31. Miura, A. and Sato, T.: 1978, J. Geophys. Res. 83, 2109.Google Scholar
  32. Ogawa, T. and Sato, T.: 1971, Planetary Space Sci. 19, 1393.Google Scholar
  33. Perkins, F. W. and Jassby, D. L.: 1971, Phys. Fluids 14, 102.Google Scholar
  34. Potemra, T. A., Iijima, T., and Saflekos, N. A.: 1979, in S.-I. Akasofu (ed.), Dynamics of the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, pp. 165–199.Google Scholar
  35. Russell, C. T., Neugebauer, M., and Kivelson, M. G.: 1974, in D. E. Page (ed.), Correlated Interplanetary and Magnetospheric Observations, D. Reidel Publ. Co., Dordrecht, Holland, pp. 139–157.Google Scholar
  36. Sato, T.: 1974, Rep. Ionos. Space Res. Jap. 28, 197.Google Scholar
  37. Sato, T.: 1976, J. Geophys. Res. 81, 263.Google Scholar
  38. Sato, T.: 1978, J. Geophys. Res. 83, 1042.Google Scholar
  39. Sato, T.: 1979, J. Geophys. Res. (to be published).Google Scholar
  40. Sato, T. and Holzer, T. E.: 1973, J. Geophys. Res. 78, 7314.Google Scholar
  41. Sato, T., Hayashi, T., Tamao, T., and Hasegawa, A.: 1978, Phys. Rev. Letters 41.Google Scholar
  42. Schield, M. A., Freeman, J. W., and Dessler, A. J.: 1969, J. Geophys. Res. 74, 247.Google Scholar
  43. Southwood, D. J.: 1977, J. Geophys. Res. 82, 5512.Google Scholar
  44. Sugiura, M. and Potemra, T. A.: 1976, J. Geophys. Res. 81, 2155.Google Scholar
  45. Tamao, T.: 1975, J. Geophys. Res. 80, 4230.Google Scholar
  46. Taylor, H. E. and Perkins, F. W.: 1971, J. Geophys. Res. 76, 272.Google Scholar
  47. Tsuda, T.: 1967, J. Geophys. Res. 72, 6013.Google Scholar
  48. Vasyliunas, V. M.: 1970, in B. M. McCormac (ed.), Particles and Fields in the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, pp. 60–71.Google Scholar
  49. Vasyliunas, V. M.: 1972, in B. M. McCormac (ed.), Earth's Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht, Holland, pp. 29–38.Google Scholar
  50. Vondrak, R. R.: 1975, J. Geophys. Res. 80, 4011.Google Scholar
  51. Wilhjelm, J., Friis-Christensen, E., and Potemra, T. A.: 1978, J. Geophys. Res. 83, 5586.Google Scholar
  52. Willis, D. M.: 1975, Geophys. J. Roy. Astron. Soc. 41, 355.Google Scholar
  53. Wolf, R. A.: 1975, Space Sci. Rev. 17, 537.Google Scholar
  54. Yasuhara, F., Kamide, Y., and Akasofu, S.-I.: 1975, Planetary Space Sci. 23, 1355.Google Scholar
  55. Yeager, D. M. and Frank, L. A.: 1976, J. Geophys. Res. 81, 3966.Google Scholar
  56. Zmuda, A. J. and Armostring, J. C.: 1974, J. Geophys. Res. 79, 4611.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • Tetsuya Sato
    • 1
  • Takesi Iijima
    • 1
  1. 1.Geophysics Research Laboratory, University of TokyoTokyoJapan

Personalised recommendations