, Volume 34, Issue 1, pp 28–38 | Cite as

Developmental and tissue-specific expression of the Q5 k gene

  • Sabine Schwemmle
  • Dorian Bevec
  • Gottfried Brem
  • Manuela B. Urban
  • Patrick A. Baeuerle
  • Elisabeth H. Weiss
Original Articles


Expression of the Q5 k gene was examined by northern blot analysis and polymerase chain reaction (PCR) in the AKR mouse and various cell lines, each of the H-2 k haplotype. Our results show that Q5 k mRNA is present during the whole postimplantational development of the AKR embryo/fetus (gestation day 6 to 15). In the juvenile mouse (week 2 to 4) transcription of the Q5 k gene persisted in all organs examined. In contrast, in the adult animal expression of the Q5 k gene was limited to the thymus and uterus of the pregnant mouse. Upon malignant transformation, the amount of Q5 k -specific mRNA increased dramatically in thymus and could also be observed in the spleen of thymoma bearing animals. Expression of the Q5 k gene was also detectable in several transformed mouse cell lines. Mitogen stimulation or treatment with cytokines induced Q5 k expression in primary spleen cell cultures. A possible explanation for the tissue-restricted expression in the adult AKR mouse is discussed.


Northern Blot Malignant Transformation Northern Blot Analysis Spleen Cell Thymoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H., Fraser, J., Flyer, D., Calvin, S.,and Flavell, R.: β2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci USA 83: 7447–7451, 1986Google Scholar
  2. Baeuerle, P. A. and Baltimore, D.: Activation of a DNA-binding activity in an apparently cytoplasmic precursor of the NF-kB transcription factor. Cell 53: 211–217, 1988Google Scholar
  3. Baeuerle, P. A. and Baltimore, D.: A subunit of active NF-kB is required for inhibition of NF-kB by IkB. Genes Dev 3: 1689–1698, 1989Google Scholar
  4. Baldwin, A. S. and Sharp, P. A.: Binding of a nuclear factor to a regulatory sequence in the promoter of the mouse H-2Kb class I major histocompatibility gene. Mol Cell Biol 7: 305–313, 1987Google Scholar
  5. Baldwin, A. S. and Sharp, P. A.: Two transcription factors, NF-kB and H2TF1, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc Natl Acad Sci USA 85: 723–727, 1988Google Scholar
  6. Burlingham, W. J., Ceman, S. S., and DeMars, R.: Secretion and cell surface expression of IgG1 are impaired in human B lymphoblasts that lack HLA-A, −B, and −C antigens. Proc Natl Acad Sci USA 86: 8005–8009, 1989Google Scholar
  7. Cate, R. L., Mattalino, R. J., Hession, C., Tizard, R., Farber, N. M., Cheung, A., Ninta, E. G., Frey, A. Z., Gash, D. J., Chow, E. P., Fisher, R. A., Bertonis, J. M., Torres, G., Wallner, B. P., Ramachandran, K. L., Ragin, R. C., Manganaro, T. F., MacLaughlin, D., and Donahoe, P. K.: Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698, 1986Google Scholar
  8. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979PubMedGoogle Scholar
  9. Chomczynski, P. and Sacchi, N.: Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987CrossRefPubMedGoogle Scholar
  10. Church, G. M. and Gilbert, W.: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995, 1984PubMedGoogle Scholar
  11. Collins, M. L., and Hunsaker, W. R.: Improved hybridization assays employing tailed oligonucleotide probes: a direct comparison with 5'end labeled oligonucleotide probes and nick-translated plasmid probes. Anal Biochem 151: 211–224, 1985Google Scholar
  12. Devlin, J. J., Lew, A. M., Flavell, R. A., and Coligan, J. E.: Secretion of a soluble class I molecule encoded by the Q10 gene of the C57BL/10 mouse. EMBO J 4: 369–374, 1985aGoogle Scholar
  13. Devlin, J. J., Weiss, E. H., Paulson, M., and Flavell, R. A.: Duplicated gene pairs and alleles of class I genes in the Qa 2 region of the murine major histocompatibility complex: a comparison. EMBO J 4: 3203–3207, 1985bGoogle Scholar
  14. Dignam, J. D., Lebovitz, R. M., and Roeder, R. G.: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489, 1983Google Scholar
  15. Doyle, A., Martin, W. J., Fuma, K., Gazadar, A., Carney, D., Martin, S. E., Linnoila, I., Cuttia, F., Mulshine, J., Bunn, P., and Minna, J.: Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small cell lung cancer. J Exp Med 161: 1135–1151, 1985Google Scholar
  16. Fahrner, K., Hogan, B. L. M., and Flavell, R. A.: Transcription of H-2 and Qa genes in embryonic and adult mice. EMBO J 6: 1265–1271, 1987Google Scholar
  17. Feinberg, A. P. and Vogelstein, B.: Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267, 1984PubMedGoogle Scholar
  18. Festenstein, H. and Schmidt, W.: Variation in MHC antigenic profiles of tumor cells and its biological effects. Immunol Rev 60: 85–127, 1981Google Scholar
  19. Flaherty, L., Elliot, E., Tine, J. A., Walsh, A. C., and Waters, J. B.: Immunogenetics of the Q and TL regions of the mouse. Crit Rev Immunol 10: 131–175, 1990Google Scholar
  20. Ghosh, S., Gifford, A. M., Riviere, L. R., Tempst, P., Nolan, G. P., and Baltimore, D.: Cloning of the DNA binding subunit of NF-kB: Homology to rel and dorsal. Cell 62: 1019–1029, 1990Google Scholar
  21. Haas, W., Kaufmann, S., and Martinex-A., C.: The development and function of γδ T cells. Immunol Today 11: 340–343, 1990Google Scholar
  22. Handy, D. E., Burke, P. A., Ozato, K., and Coligan, J. E.: Site-specific mutagenesis of the class I regulatory element of the Q10 gene allows expression in non-liver tissues. J Immunol 142: 1015–1021, 1989Google Scholar
  23. Hansen, T., Stagsted, J., Pedersen, L., Roth, R. A., Goldstein, A., and Olsson, L.: Inhibition of insulin receptor phosphorylation by peptides derived from major histocompatibility complex class I antigens. Proc Natl Acad Sci USA 86: 3123–3126, 1989Google Scholar
  24. Henseling, U., Schmidt, W., Schöler, H. R., Gruss, P., and Hatzopouslos, A. K.: A transcription factor interacting with the class I gene enhancer is inactive in tumorigenic cell lines which suppress major histocompatibility complex class I genes. Mol Cell Biol 10: 4100–4109, 1990Google Scholar
  25. Israel, A., Kimura, A., Kieran, M., Yano, O., Kanellopoulos, J., Le Bail, O., and Kourilsky, P.: A common positive transacting factor binds to enhancer sequences in the promoters of mouse H-2 and β2-microglobulin genes. Proc Natl Acad Sci USA 84: 2653–2657, 1987Google Scholar
  26. Israel, A., Le Bail, O., Piette, J., Kieran, M., Logeeat, F., Wallach, D., Fellous, M., and Kourilsky, P.: TNF stimulates expression of mouse MHC class I genes by inducing an NF-kB-like enhancer binding activity which displaces constitutive factors. EMBO J 8: 3793–3800, 1989Google Scholar
  27. Ito, K., Van Kaer, L., Bonneville, M., Hsu, S., Murphy, D. B., and Tonegawa, S.: Recognition of the product of a novel MHC-TL region gene (27 b) by a mouse γδ T cell receptor. Cell 62: 549–561, 1990Google Scholar
  28. Janeway, C. A., Jr., Jones, B., and Hayday, A.: Specificity and function of T cells bearing γδ receptors. Immunol Today 9: 73–79, 1988Google Scholar
  29. Jones, E. A. and Bodmer, W. F.: Lack of expression of HLA antigens on choriocarcinoma cell lines. Tissue Antigens 16: 195–201, 1980Google Scholar
  30. Kieran, M., Blank, V., Logeat, F., Vandekerckhove, J., Lottspeich, F., Le Bail, O., Urban, M. B., Kourilsky, P., Naeuerle, P., and Israel, A.: The DNA binding subunit of NF-kB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62: 1007–1018, 1990Google Scholar
  31. Kimura, A., Israel, A., Le Bail, B., and Kourilsky, P.: Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I expression. Cell 44: 261–271, 1986Google Scholar
  32. Kittur, D., Shimizu, Y., DeMars, R., and Edidin, M.: Insulin binding to human B lymphoblasts is a function of HLA haplotype. Proc Natl Acad Sci USA 84: 1351–1355, 1987Google Scholar
  33. Klein, J.: Natural History of the Major Histocompatibility Complex. Wiley, New York, 1986Google Scholar
  34. Korber, B., Hood, L., and Stroynowski, I.: Regulation of murine class I genes by interferons is controlled by regions located both 5' and 3' to the transcription initiation site. Proc Natl Acad Sci USA 84: 3380–3384, 1987PubMedGoogle Scholar
  35. Kress, M., Cosman, D., Khoury, G., and Jay, G.: Secretion of a transplantation-related antigen. Cell 34: 189–196, 1983Google Scholar
  36. Labeta, M. O., Fernandez, N., Reyes, A., Ferrara, P., Marelli, O., Le Roy, E., Houlihang, J., and Festenstein, H.: Biochemical analysis of a novel H-2 class I-like glycoprotein expressed in five AKR-(gross virus) derived spontaneous T cell leukemias. J Immunol 143: 1245–1253, 1989Google Scholar
  37. Lampson, L. A., Fisher, C. A., and Whealan, J. P.: Striking paucity of HLA-A, −B, −C and β2-microglobulin on human neuroblastoma cell lines. J Immunol 130: 2471–2478, 1983Google Scholar
  38. Mellor, A. L., Weiss, E. H., Kress, M., Jay, G., and Flavell, R. A.: A nonpolymorphic class I gene in the murine major histocompatibility complex. Cell 36: 139–144, 1984Google Scholar
  39. Messer, G., Weiss, E. H., and Baeuerle, P. A.: Tumor necrosis factor-β (TNF-β) induces binding of the NF-kB transcription factor to a high-affinity kB element in the TNF-β promoter. Cytokine 2: 389–397, 1990Google Scholar
  40. Michaelson, J., Flaherty, L., Vitetta, E., and Ponlik, M. D.: Molecular similarities between the Qa-2 alloantigen and other gene products of the 17th chromosome of the mouse. J Exp Med 145: 1066–1070, 1977Google Scholar
  41. Morello, D., Daniel, F., Baldacci, P., Cayre, Y., Gachelin, G., and Kourilsky, P.: Absence of significant H-2 and β2-microglobulin mRNA expression by mouse embryonal carcinoma cells. Nature 296: 260–262, 1982Google Scholar
  42. Morello, D., Duprey, P., Israel, A., and Babinet, C.: Asynchronous regulation of mouse H-2D and beta-2 microglobulin RNA transcripts. Immunogenetics 22: 441–452, 1985Google Scholar
  43. Ozato, K., Wan, Y., and Orrison, B.: Mouse major histocompatibility class I gene expression begins at midsomite stage and is inducible in earlier stage embryos by interferon. Proc Natl Acad Sci USA 82: 2427–2431, 1985Google Scholar
  44. Ruano, G., Fenton, W., and Kidd, K. K.: Biphasic amplification of very dilute DNA samples via ‘booster’ PCR. Nucleic Acids Res 17: 5407, 1989Google Scholar
  45. Saiki, R. K., Gelfahd, D. H., Staffel, S., Scharf, S. J., Higuchi, R. G., Horn, T., Mullis, K. B., and Erlich, H. A.: Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988PubMedGoogle Scholar
  46. Sawicki, J. A., Magnuson, T., and Epstein, C. J.: Evidence for expression of the paternal genome in the two-cell mouse embryo. Nature 294: 450–451, 1981Google Scholar
  47. Schmidt, W. and Festenstein, H.: Resistance to cell-mediated cytotoxicity is correlated with reduction of H-2K gene products in AKR leukemia. Immunogenetics 16: 257–264, 1982Google Scholar
  48. Schmidt, W., Henseling, U., Bevec, D., Alonzo, A. D. R., and Festenstein, H.: Control of synthesis and expression of H-2 heavy chain and beta-2 microglubulin in AKR leukemias. Immunogenetics 22: 483–494, 1985Google Scholar
  49. Schmidt, W., Noll, G., Bevec, D., and Henseling, U.: Aberrant MHC antigens in a sarcoma virus-induced mouse tumour. Immunogenetics 13: 123–132, 1986Google Scholar
  50. Schnabl, E., Stockinger, H., Majdic, O., Gangitsch, H., Lindley, I. J., Maurer, D., Hajek-Rosenmayer, A., and Knapp, W.: Activated human T lymphocytes express MHC class I heavy chains not associated with β2-microglobulin. J Exp Med 171: 1431–1442, 1990Google Scholar
  51. Searle, R. F., Sellens, M. H., Elson, J., Jenkinson, E. J., and Billington, D. W.: Detection of alloantigens during preimplantation development and early trophoblast differentiation in the mouse by immunoperoxidase labeling. J Exp Med 143: 348–359, 1976Google Scholar
  52. Sen, R. and Baltimore, D.: Multiple nuclear factors interact with the immunoglobulin enhancer. Cell 46: 705–716, 1986Google Scholar
  53. Sharon, M., Gnarra, J. R., Baniyash, M., and Leonard, W. J.: Possible association between IL-2 receptors and class I HLA molecules on T cells. J Immunol 141: 3512–3515, 1988Google Scholar
  54. Solano, A. R., Cremaschi, G., Sanchez, M. L., Borda, E., Sterin-Borda, L., and Podesta, E. J.: Molecular and biological interaction between major histocompatibility complex class I antigens and luteinizing hormone receptors of β-adrenergic receptors triggers cellular response in mice. Proc Natl Acad Sci USA 85: 5087–5091, 1988Google Scholar
  55. Soloski, M. J., Uhr, J. W., Flaherty, L., and Vitteta, E. S.: Qa-2, H-2K, and H-2D alloantigens evolved from a common ancestral gene. J Exp Med 153: 1080–1093, 1981Google Scholar
  56. Stagsted, J., Reaven, G. M., Hansen, T., Goldstein. A., and Olsson, L.: Regulation of insulin receptor functions by a peptide derived from a major histocompatibility complex class I antigen. Cell 62: 297–307, 1990Google Scholar
  57. Stanton, T. H. and Hood, L.: Biochemical identification of the Qa-1 alloantigen. Immunogenetics 11: 309–314, 1980Google Scholar
  58. Steinmetz, M., Moore, K. W., Frelinger, J. G., Sher, B. T., Shen, F. W., Boyse, E. A., and Hood, L.: A pseudogene homologous to mouse transplantation antigens: transplantation antigens are encoded by eight exons that correlate with protein domains. Cell 25: 683–692, 1981Google Scholar
  59. Stiernberg, J., Low, M. G., Flaherty, L., and Kincade, P. W.: Removal of lymphocyte surface molecules with phosphatidylinositol-specific phospholipase C: effects on mitogen responses and evidence that ThB and certain Qa antigens are membrane anchored via phosphatidylinositol. J Immunol 138: 3877–3884, 1987Google Scholar
  60. Stroynowski, I., Soloski, M., Low, M. G., and Hood, L.: A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: anchoring of the product by a phospholipid tail. Cell 50: 759–768, 1987Google Scholar
  61. Tine, J. A., Walsh, A., Rathbun, D., Leonard, L., Wakeland, E. K., Dilwith, R., and Flaherty, L.: Genetic polymorphism of Q region genes from wild-derived mice: implications for Q region evolution. Immunogenetics 31: 315–325, 1990Google Scholar
  62. Waneck, G. L., Sherman, D. H., Kincade, P. W., Low, M. G., and Flavell, R. A.: Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor. Proc Natl Acad Sci USA 85: 577–581, 1988Google Scholar
  63. Warner, C. M., Gollnick, S. O., Flaherty, L., and Goldbard, S. B.: Analysis of Qa-2 antigen expression by preimplantation mouse embryos: Possible relationship to the preimplantation-embryo-development (Ped) gene product. Biol Reprod 36: 611–616, 1987Google Scholar
  64. Watts, S., Davis, A. C., Gant, B., Wheeler, C., Hill, L., and Goodenow, R. S.: Organization and structure of the Qa genes of the major histocompatibility complex of the C3H mouse: implications for Qa function and class I evolution. EMBO J 8: 1749–1759, 1989Google Scholar
  65. Webb, C. G., Gall, E., and Edelman, G. M.: Synthesis and distribution of H-2 antigens in preimplantation mouse embryos. J Exp Med 146: 923–932, 1977Google Scholar
  66. Weiss, E. H.: Molecular biology of the mouse Q region. Immunol Res 6: 179–191, 1987Google Scholar
  67. Weiss, E. H., Golden, L., Fahrner, K., Mellor, A. C., Devlin, J. J., Bullman, H., Tiddens, H., Bud, H., and Flavell, R. A.: Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature 310: 650–655, 1984Google Scholar
  68. Weiss, E. H., Bevec, D., Messer, G., Schwemmle, S., Grosshaus, C., Steinmetz, M., and Schmidt, W.: Organization of the AKR Qa region: structure of a divergent class I sequence, Q5k. J Immunogenet 16: 283–290, 1989Google Scholar
  69. Yano, O., Kanellopoulos, J., Kieran, M., Le Bail, O., Israel, A., and Kourilsky, P.: Purification of KBF1, a common factor binding to both H-2 and β2-microglobulin enhancers. EMBO J 6: 3317–3324, 1987Google Scholar
  70. Zabel, U., Schreck, R., and Baeuerle, P. A.: DNA-binding of purified transcription factor NF-kB: Affinity, specificity, Zn2+ dependence and differential half site recognition. J Biol Chem, in press, 1991Google Scholar
  71. Zachow, K. R. and Orr, H. T.: Regulation of HLA class I transcription in T cells. J Immunol 143: 3385–3389, 1989Google Scholar
  72. Zijlstra, M., Bix, M., Simister, N. E., Loring, J. M., Raulet, D. H., and Jaenisch, R.: β2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344: 742–746, 1990Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Sabine Schwemmle
    • 1
  • Dorian Bevec
    • 1
  • Gottfried Brem
    • 2
  • Manuela B. Urban
    • 3
  • Patrick A. Baeuerle
    • 3
  • Elisabeth H. Weiss
    • 1
  1. 1.Institut für ImmunologieMünchenFederal Republic of Germany
  2. 2.Lehrstuhl für Molekulare TierzuchtMünchenFederal Republic of Germany
  3. 3.Genzentrum, Laboratorium für Molekulare BiologieMartinsriedFederal Republic of Germany

Personalised recommendations