Space Science Reviews

, Volume 27, Issue 2, pp 109–153 | Cite as

The application of dimensional analysis to cosmology

How to make cosmology simple by using dimensional conspiracy
  • Paul S. Wesson


Cosmology as it is usually studied suffers from the problem that no criterion is known which isolates from the large class of models allowed by the equations of physics those few which are realized in Nature. To provide such a criterion, it is proposed that cosmology should be based on the study of models which are free of arbitrary scales or units, this condition being compatible with (but not identical with) the Cosmological Principle. Formally, the basis for scale-free cosmology can be expressed in a dimensional Conspiracy Hypothesis: The material parameters of a system (mass, density, pressure etc.), the constants of physics and the coordinates have realizable physical meanings only when they occur together in dimensionless combinations (η-numbers) in which the components may vary with time or place but in such a manner that the variations conspire to keep the η-numbers constant. The Conspiracy Hypothesis (CH) streamlines cosmology, simplifying it to the finding of a few dimensionless numbers. Applied to Einstein's general relativity, the CH yields a simple cosmological model consisting of static clusters of galaxies with inverse-square density profiles embedded in an expanding, homogeneous background. This model agrees well with the observed Universe insofar as the latter can be described by general relativity. The CH can also be applied to other theories of gravity, especially those in which the gravitational parameter G is variable, and can also in itself be taken as a basis for gravitational theory.


General Relativity Material Parameter Physical Meaning Large Class Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barenblatt, G. E. and Zel'dovich, Y. B.: 1972, Ann. Rev. Fluid Mech. 4, 285.Google Scholar
  2. Birkhoff, G.: 1950, Hydrodynamics, Princeton Univ. Press, Princeton, N.J..Google Scholar
  3. Canuto, V., Adams, P. J., Hsieh, S.-H., and Tsiang, E.: 1977, Phys. Rev. (Ser. 3) D16, 1643.Google Scholar
  4. Close, F. E.: 1979, Nature 278, 209.Google Scholar
  5. De Vaucouleurs, G.: 1970, Science 167, 1203.Google Scholar
  6. De Vaucouleurs, G.: 1971, Publ. Astron. Soc. Pacific 83, 113.Google Scholar
  7. Dirac, P. A. M.: 1938, Proc. Roy. Soc. London A165, 199.Google Scholar
  8. Dirac, P. A. M.: 1974, Proc. Roy. Soc. London A338, 439.Google Scholar
  9. Eddington, A. E.: 1924, The Mathematical Theory of Relativity, 2nd. ed., Cambridge Univ. Press, London.Google Scholar
  10. Einstein, A.: 1931, Berlin Sitz, (Deutsch Akad. Wiss., 16th. April), 235.Google Scholar
  11. Goldstein, H.: 1959, Classical Mechanics, Addison-Wesley, Reading, Mass.Google Scholar
  12. Gunn, J. E., and Tinsley, B.: 1975, Nature 257, 454.Google Scholar
  13. Harwit, M.: 1971, Bull. Astron. Inst. Czech. 22, 22.Google Scholar
  14. Henriksen, R. N. and Wesson, P. S.: 1978, Astrophys. Space Sci. 53, 429.Google Scholar
  15. Infeld, L. and Schild, A.: 1945, Phys. Rev. (Ser. 2) 68, 250.Google Scholar
  16. Infeld, L. and Schild, A.: 1946, Phys. Rev. (Ser. 2) 70, 410.Google Scholar
  17. Langhaar, H.: 1951, Dimensional Analysis and Theory of Models, J. Wiley, New York.Google Scholar
  18. Llewellyn-Smith, C. H.: 1972, Phys. Rep. 3C, 261.Google Scholar
  19. Maeder, A.: 1977, Astron. Astrophys. 56, 359.Google Scholar
  20. Marciano, W. and Pagels, H.: 1978, Phys. Rep. 36C, 137.Google Scholar
  21. McVittie, G. C.: 1965, General Relativity and Cosmology, 2nd. ed., Chapman and Hall, London.Google Scholar
  22. Milne, E. A.: 1935, Relativity, Gravitation and World Structure, Oxford Univ. Press, London.Google Scholar
  23. Mulvey, J.: 1979, Nature 278, 403.Google Scholar
  24. Podurets, M. A: 1964, Soviet Astron. (Astron. J.) 8, 19.Google Scholar
  25. Politzer, H. D.: 1974, Phys. Rep. 14C, 129.Google Scholar
  26. Ritter, R. C., Gillies, G. T., Rood, R. T., and Beams, J. W.: 1978, Nature 271, 228.Google Scholar
  27. Sedov, L. I.: 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, London.Google Scholar
  28. Tinsley, B.: 1977, Physics Today 30 (June), 32.Google Scholar
  29. Tinsley, B.: 1978, Nature 273, 208.Google Scholar
  30. VandenBerg, D. A.: 1976, Monthly Notices Roy. Astron. Soc. 176, 455.Google Scholar
  31. VandenBerg, D. A.: 1977, Monthly Notices Roy. Astron. Soc. 181, 695.Google Scholar
  32. Van den Berg, S.: 1977, Vistas Astron. 21, 71.Google Scholar
  33. Van Flandern, T. C.: 1975, Monthly Notices Roy. Astron. Soc. 170, 333.Google Scholar
  34. Weinberg, S.: 1974, Rev. Mod. Phys. 46, 255.Google Scholar
  35. Wesson, P. S.: 1978a, Astron. Astrophys. 68, 131.Google Scholar
  36. Wesson, P. S.: 1978b, Cosmology and Geophysics, A. Hilger, Bristol, U.K..Google Scholar
  37. Wesson, P. S.: 1979, Astron. Astrophys. 80, 296.Google Scholar
  38. Wesson, P. S.: 1980, Gravity, Particles, and Astrophysics, D. Reidel, Dordrecht, Holland.Google Scholar
  39. Weyl, H.: 1922, Space-Time-Matter, 4th. ed., Methuen, London (reprinted, 1952, Dover, New York).Google Scholar
  40. Wilkinson, D. H.: 1958, Phil Mag. (Ser. 8) 3, 582.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • Paul S. Wesson
    • 1
    • 2
  1. 1.Institute of Theoretical AstrophysicsUniversity of OsloNorway
  2. 2.Dept. of PhysicsUniversity of AlbertaCanada

Personalised recommendations