Advertisement

Journal of Biomolecular NMR

, Volume 6, Issue 2, pp 211–216 | Cite as

Classification of amino acid spin systems using PFG HCC(CO)NH-TOCSY with constant-time aliphatic 13C frequency labeling

  • Mitsuru Tashiro
  • Carlos B. Rios
  • Gaetano T. Montelione
Short Communication

Summary

We have developed a useful strategy for identifying amino acid spin systems and side-chain carbon resonance assignments in small 15N-, 13C-enriched proteins. Multidimensional constant-time pulsed field gradient (PFG) HCC(CO)NH-TOCSY experiments provide side-chain resonance frequency information and establish connectivities between sequential amino acid spin systems. In PFG HCC(CO)NH-TOCSY experiments recorded with a properly tuned constant-time period for frequency labeling of aliphatic 13C resonances, phases of cross peaks provide information that is useful for identifying spin system types. When combined with 13C chemical shift information, these patterns allow identification of the following spin system types: Gly, Ala, Thr, Val, Leu, Ile, Lys, Arg, Pro, long-type (i.e., Gln, Glu and Met), Ser, and AMX-type (i.e., Asp, Asn, Cys, His, Phe, Trp and Tyr).

Keywords

Spin system identification Pulsed-field gradients Constant-time evolution 13C−13C coupling IgG-binding protein A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BruhwilerD. and WagnerG. (1986) J. Magn. Reson., 69, 546–551.Google Scholar
  2. ClowesR.T., BoucherW., HardmanC.H., DomailleP.J. and LaueE.D. (1993) J. Biomol. NMR, 3, 349–354.Google Scholar
  3. ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  4. FarmerIIB.T. and VentersR.A. (1995) J. Am. Chem. Soc., 117, 4187–4188.Google Scholar
  5. GrzesiekS. and BaxA. (1992a) J. Magn. Reson., 99, 201–207.Google Scholar
  6. GrzesiekS. and BaxA. (1992b) J. Am. Chem. Soc., 114, 6291–6293.Google Scholar
  7. GrzesiekS., AnglisterJ. and BaxA. (1993) J. Magn. Reson. Ser. B, 101, 114–119.Google Scholar
  8. GrzesiekS. and BaxA. (1993) J. Biomol. NMR, 3, 185–204.Google Scholar
  9. JohnB.K., PlantD. and HurdR. (1992) J. Magn. Reson. Ser. A, 101, 113–117.Google Scholar
  10. KayL.E., KeiferP. and SaarinenT. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  11. LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1992) FEBS Lett., 314, 413–418.Google Scholar
  12. LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1993) J. Biomol. NMR, 3, 225–231.Google Scholar
  13. LyonsB.A. and MontelioneG.T. (1993) J. Magn. Reson. Ser. B, 101, 206–209.Google Scholar
  14. LyonsB.A., TashiroM., CedergrenL., NilssonB. and MontelioneG.T. (1993) Biochemistry, 32, 7839–7845.Google Scholar
  15. MarionD., IkuraM., TschudinR. and BaxA. (1989) J. Magn. Reson., 84, 393–399.Google Scholar
  16. MohebbiA. and ShakaA.J. (1991) Chem. Phys. Lett., 178, 374–378.Google Scholar
  17. MontelioneG.T. and WagnerG. (1989) J. Am. Chem. Soc., 111, 3096–3098.Google Scholar
  18. MontelioneG.T., LyonsB.A., EmersonS.D. and TashiroM. (1992) J. Am. Chem. Soc., 114, 10974–10975.Google Scholar
  19. MuhandiramD.R. and KayL.E. (1994) J. Magn. Reson. Ser. B, 103, 203–216.Google Scholar
  20. NilssonB., MoksT., JanssonB., AbrahmsenL., ElmbladA., HolmgrenE., HenrichsonC., JonesT.A. and UhlenM. (1987) Protein Eng., 1, 107–113.Google Scholar
  21. PalmerA.G., CavanaghJ., WrightP.E. and RanceM. (1991) J. Magn. Reson., 93, 151–170.Google Scholar
  22. RichardsonJ.M., ClowesR.T., BoucherW., DomailleP.J., HardmanC.H., KeelerJ. and LaueE.D. (1993) J. Magn. Reson. Ser. B, 101, 223–227.Google Scholar
  23. SchleucherJ., SchwendingerM., SattlerM., SchmidtP., SchedletzkyO., GlaserS.J., SørensenO.W. and GriesingerC. (1994) J. Biomol. NMR, 4, 301–306.Google Scholar
  24. ShakaA.J., BarkerP.B. and FreemanR. (1988) J. Magn. Reson., 64, 547–552.Google Scholar
  25. ShakaA.J., LeeC.J. and PinesA. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  26. SørensenO.W., EichG.W., LevittM.H., BodenhausenG. and ErnstR.R. (1983) Prog. NMR Spectrosc., 16, 163–192.Google Scholar
  27. VuisterG.W. and BaxA. (1992) J. Magn. Reson., 98, 428–435.Google Scholar
  28. WangA.C., LodiP.J., QinJ., VuisterG.W., GronenbornA.M. and CloreG.M. (1994) J. Magn. Reson. Ser. B, 105, 196–198.Google Scholar
  29. WittekindM. and MuellerL. (1993) J. Magn. Reson. Ser. B, 101, 201–205.Google Scholar
  30. WittekindM., MetzlerW.J. and MuellerL. (1993) J. Magn. Reson. Ser. B, 101, 214–217.Google Scholar
  31. YamazakiT., Forman-KayJ.D. and KayL.E. (1993) J. Am. Chem. Soc., 115, 11054–11055.Google Scholar
  32. YamazakiT., PascalS.M., SingerA.U., Forman-KayJ.D. and KayL.E. (1995) J. Am. Chem. Soc., 117, 3556–3564.Google Scholar
  33. Zimmerman, D. and Montelione, G.T. (1995) Curr. Opin. Struct. Biol., in press.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Mitsuru Tashiro
    • 1
    • 2
  • Carlos B. Rios
    • 1
    • 2
  • Gaetano T. Montelione
    • 1
    • 2
  1. 1.Center for Advanced Biotechnology and MedicineRutgers UniversityPiscatawayU.S.A.
  2. 2.Graduate Program in ChemistryRutgers UniversityPiscatawayU.S.A.

Personalised recommendations