Journal of Biomolecular NMR

, Volume 6, Issue 2, pp 180–188 | Cite as

HeteroTOCSY-based experiments for measuring heteronuclear relaxation in nucleic acids and proteins

  • Barry I. Schweitzer
  • Kevin H. Gardner
  • Gregory Tucker-Kellogg
Research Paper

Summary

While both 31P and 113Cd are present at locations of interest in many different macromolecular systems, heteronuclear-detected relaxation measurements on these nuclei have been restrained by limitations in either resolution or signal-to-noise ratio. We have developed hetero TOCSY-based methods to overcome both of these problems. Two-dimensional versions of these experiments were utilized to measure 31P T1 and T2 values in DNA oligonucleotides; the additional resolution offered by a second dimension allowed determination of these values for most of the 31P resonances in a DNA dodecamer. The results from the experiments indicated that there was little significant variation in T1 values for the different phosphates in the DNA dodecamer; however, the T2 values showed a clear pattern, with lower values in the interior of the sequence than at the ends of the helix. Furthermore, a significant correlation between 31P chemical shifts and T2 values was observed. One-dimensional, frequency-selective versions of these experiments were also developed for use on systems containing a smaller number of heteronuclear spins. These methods were applied to investigate the heteronuclear relaxation properties of 113Cd in 113Cd2LAC9(61), a Cys6Zn2 DNA-binding domain. Data from the experiments confirm biochemical evidence that more significant differences occur in the metal-protein interactions between the two metal-binding sites than has been previously identified for proteins containing this motif.

Keywords

DNA Phosphorus Cadmium Heteronuclear Relaxation Hetero TOCSY Cytosine arabinoside LAC9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AbragamA. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  2. ArtemovD.Y. (1991) J. Magn. Reson., 91, 405–407.Google Scholar
  3. BalejaJ.D., MarmorsteinR., HarrisonS.C. and WagnerG. (1992) Nature, 356, 450–453.Google Scholar
  4. BeardenD.W. and BrownL.R. (1989) Chem. Phys. Lett., 163, 432–436.Google Scholar
  5. BodeyG., FreireichE., MontoR. and HewlettJ. (1969) Cancer Chemother. Rep., 53, 59–66.Google Scholar
  6. BoudotD., CanetD., BrondeauJ. and BoubelJ.C. (1989) J. Magn. Reson., 83, 428–439.Google Scholar
  7. ByrdR.A., SummersM.F., ZonG., FoutsC.S. and MarzilliL.G. (1986) J. Am. Chem. Soc., 108, 504–505.Google Scholar
  8. ColemanC.N., StollerR.G., DrakeJ.C. and ChabnerB.A. (1975) Blood, 46, 791–803.Google Scholar
  9. DickersonR.E. and DrewH.R. (1981) J. Mol. Biol., 149, 761–786.Google Scholar
  10. ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, p. 468.Google Scholar
  11. FreiE., BickersJ., LaneM., LearyW. and TalleyR. (1969) Cancer Res., 29, 1325–1332.Google Scholar
  12. GadhaviP.L., DavisA.L., PoveyJ.F., KeelerJ. and LaueE.D. (1991) FEBS Lett., 281, 223–226.Google Scholar
  13. GaoY.-G., Van derMarelG.A., VanBoomJ.H. and WangA.H.-J. (1991) Biochemistry, 30, 9922–9931.Google Scholar
  14. GardnerK.H., PanT., NarulaS., RiveraE. and ColemanJ.E. (1991) Biochemistry, 30, 11292–11302.Google Scholar
  15. GardnerK.H. and ColemanJ.E. (1994) J. Biomol. NMR, 4, 761–774.Google Scholar
  16. GorensteinD.G., LuxonB.A. and FindlayJ.B. (1977) Biochim. Biophys. Acta, 475, 184–190.Google Scholar
  17. GorensteinD.G. (1987) Chem. Rev., 87, 1047–1077.Google Scholar
  18. HandeK.R. and ChabnerB.A. (1978) Cancer Res., 38, 579–585.Google Scholar
  19. JohnstonM. (1987) Nature, 328, 353–355.Google Scholar
  20. KaluarachchiK., MeadowsR.P. and GorensteinD.G. (1991) Biochemistry, 30, 8785–8797.Google Scholar
  21. KayL.E., MarionD. and BaxA. (1989) J. Magn. Reson., 84, 72–84.Google Scholar
  22. KelloggG.W. (1992) J. Magn. Resson., 98, 176–182.Google Scholar
  23. KelloggG.W. and SchweitzerB.I. (1993) J. Biomol. NMR, 3, 577–595.Google Scholar
  24. KördelJ., JohanssonC. and DrakenbergT. (1992) J. Magn. Reson., 100, 581–587.Google Scholar
  25. KraulisP.J., RaineA.R.C., GadhaviP.L. and LaueE.D. (1992) Nature 356, 448–450.Google Scholar
  26. KufeD.W., MajorP.P., EganE.M. and BeardsleyG.P. (1980) J. Biol. Chem., 255, 8997–9000.Google Scholar
  27. LipariG. and SzaboA. (1982) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  28. MajorP.P., EganE.M., HerrickD. and KufeD.W. (1982) Biochem. Pharmacol., 31, 2937–2940.Google Scholar
  29. MajumdarA. and ZuiderwegE.R.P. (1995) J. Magn. Reson. Ser. A., 113, 19–31.Google Scholar
  30. MarionD. and WüthrichK. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  31. MarionD., IkuraM. and BaxA. (1989) J. Magn. Reson., 84, 425–430.Google Scholar
  32. MarkleyJ.L., HorsleyW.J. and KleinM.P. (1971) J. Chem. Phys., 55, 3604–3607.Google Scholar
  33. MarmorsteinR., CareyM., PtashneM. and HarrisonS.C. (1992) Nature, 356, 408–414.Google Scholar
  34. MauT., BalejaJ.D. and WagnerG. (1992) Protein Sci., 1, 1403–1412.Google Scholar
  35. MikitaT. and BeardsleyG.P. (1988) Biochemistry, 27, 4698–4705.Google Scholar
  36. MorrisG.A. and GibbsA. (1991) J. Magn. Reson., 91, 444–449.Google Scholar
  37. PanT. and ColemanJ.E. (1989) Proc. Natl. Acad. Sci. USA, 86, 3145–3149.Google Scholar
  38. PanT. and ColemanJ.E. (1990) Proc. Natl. Acad. Sci. USA 87, 2077–2081.Google Scholar
  39. PanT., HalvorsenY.-D., DicksonR.C. and ColemanJ.E. (1990) J. Biol. Chem., 265, 21427–21429.Google Scholar
  40. PerrinoF.W. and MekoshH.L. (1992) J. Biol. Chem. 267, 23043–23051.Google Scholar
  41. RodgersK.R. and ColemanJ.E. (1994) Protein Sci., 3, 608–619.Google Scholar
  42. RoongtaV.A., JonesC.R. and GorensteinD.G. (1990) Biochemistry, 29, 5245–5258.Google Scholar
  43. SchweitzerB.I., MikitaT., KelloggG.W., GardnerK.H. and BeardsleyG.P. (1994) Biochemistry, 33, 11460–11475.Google Scholar
  44. ShakaA.J., LeeC.J. and PinesA. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  45. ShirakawaM., FairbrotherW.J., SerikawaY., OhkuboT., KyogokuY. and WrightP.E. (1993) Biochemistry, 32, 2144–2153.Google Scholar
  46. SklenářV., MiyashiroH., ZonG., MilesH.T., and BaxA. (1986) FEBS Lett., 208, 94–98.Google Scholar
  47. WilliamsonJ.R. and BoxerS.G. (1989) Biochemistry, 28, 2819–2831.Google Scholar
  48. ZuiderwegE.R.P. (1990) J. Magn. Reson., 89, 533–542.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Barry I. Schweitzer
    • 1
  • Kevin H. Gardner
    • 3
  • Gregory Tucker-Kellogg
    • 2
    • 3
  1. 1.Department of PediatricsYale University School of MedicineNew HavenU.S.A.
  2. 2.Department of ChemistryYale UniversityNew HavenU.S.A.
  3. 3.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenU.S.A.

Personalised recommendations