Advertisement

Journal of Biomolecular NMR

, Volume 6, Issue 2, pp 123–128 | Cite as

Solution conformations of proline rings in proteins studied by NMR spectroscopy

  • Mengli Cai
  • Ying Huang
  • Jianhua Liu
  • Ramaswamy Krishnamoorthi
Research Paper

Summary

Three different conformations of proline rings in a protein in solution, Up, Down and Twist, have been distinguished, and stereospecific assignments of the pyrrolidine β-, γ- and δ-hydrogens have been made on the basis of 1H-1H vicinal coupling constant patterns and intraresidue NOEs. For all three conformations, interhydrogen distances in the pairs α-β3, β33, β22, γ22, and γ33 (2.3 Å) are shorter than those in the pairs α-β2, β23, β32, γ23, and γ32 (2.7–3.0 Å), resulting in stronger NOESY cross peaks. For the Up conformation, the β32 and γ23 spin-spin coupling constants are small (<3 Hz), and weak cross peaks are obtained in a short-mixing-time (10 ms) TOCSY spectrum; all other vicinal coupling constants are in the range 5–12 Hz, and result in medium to strong TOCSY cross peaks. For the Down form, the α-β2, β23, and γ32 vicinal coupling constants are small, leading to weak TOCSY cross peaks; all other couplings again are in the range 5–12 Hz, and result in medium to strong TOCSY cross peaks. In the case of a Twist conformation, dynamically averaged coupling constants are anticipated. The procedure has been applied to bovine pancreatic trypsin inhibitor and Cucurbita maxima trypsin inhibitor-V, and ring conformations of all prolines in the two proteins have been determined.

Keywords

Proline Conformation Protein Solution structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AnilKumar, ErnstR.R. and WüthrichK. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.Google Scholar
  2. AnteunisM.J.O. and SleeckxJ.J.M. (1987) In Molecular Structure and Energetics, Vol. 4 (Eds, LiebmanJ.F. and GreenbergA.), VCH Publishers, New York, NY, pp. 189–233.Google Scholar
  3. BasusV.J. (1989) Methods Enzymol., 177, 132–149.Google Scholar
  4. BaxA. and DavisD.G. (1985) J. Magn. Reson., 65, 355–360.Google Scholar
  5. BaxA. (1989) Annu. Rev. Biochem., 58, 223–256.Google Scholar
  6. BerndtK.D., GuntertP., OrbonsL.P.M. and WüthrichK. (1992) J. Mol. Biol., 227, 757–775.Google Scholar
  7. BorgiasB.A. and JamesT.L. (1988) J. Magn. Reson., 79, 493–512.Google Scholar
  8. BrunneR.M., VanGunsterenW.F., BrüschweilerR. and ErnstR.R. (1993) J. Am. Chem. Soc. 115, 4764–4768.Google Scholar
  9. CaiM., LiuJ., GongY. and KrishnamoorthiR. (1995a) J. Magn. Reson. Ser. B, 107, 172–178.Google Scholar
  10. CaiM., GongY., KaoJ.L.-F. and KrishnamoorthiR. (1995b) Biochemistry, 34, 5201–5211.Google Scholar
  11. CharyK.V.R., HosurR.V., GovilG., ChenC. and MilesH.T. (1988) Biochemistry, 27, 3858–3867.Google Scholar
  12. CloreG.M., AppellaE., YamadaM., MatsushimaK. and GronenbornA.M. (1990) Biochemistry, 29, 1689–1696.Google Scholar
  13. CloreG.M., WingfieldP.T. and GronenbornA.M. (1991) Biochemistry, 30, 2315–2323.Google Scholar
  14. ConstantineK.L., FriedrichsM.S. and MuellerL. (1994) J. Magn. Reson. Ser. B, 104, 62–68.Google Scholar
  15. DeLeeuwF.A.A.M., AltonaC., KesslerH., BermelW., FriedrichA., KrackG. and HullW.E. (1983) J. Am. Chem. Soc., 105, 2237–2246.Google Scholar
  16. DemarcoA., LlinasM. and WüthrichK. (1978) Biopolymers, 17, 617–636.Google Scholar
  17. GriesingerC. and EggenbergerU. (1992) J. Magn. Reson., 97, 426–434.Google Scholar
  18. GüntertG., BraunW., BilleterM. and WüthrichK. (1989) J. Am. Chem. Soc., 11, 3997–4004.Google Scholar
  19. HaasnootC.A.G., DeLeeuwF.A.A.M., DeLeeuwH.P.M. and AltonaC. (1981) Biopolymers, 20, 1211–1245.Google Scholar
  20. HosurR.V., RavikumarM., CharyK.V.R., ShethA., GovilG., TanZ.K. and MilesH.T. (1986) FEBS Lett., 205, 71–76.Google Scholar
  21. IUPAC-IUB, Commission on Biochemical Nomenclature (1970) J. Mol. Biol., 52, 1–17.Google Scholar
  22. KrishnamoorthiR., GongY. and RichardsonM. (1990) FEBS Lett., 273, 163–167.Google Scholar
  23. MádiZ.L., GriesingerC. and ErnstR.R. (1990) J. Am. Chem. Soc., 112, 2908–2914.Google Scholar
  24. MadisonV. (1977) Biopolymers, 16, 2672–2692.Google Scholar
  25. MajumdarA. and HosurR.V. (1990) J. Magn. Reson., 88, 284–304.Google Scholar
  26. Milner-WhiteE.J., BellL.H. and MaccallumP.H. (1992) J. Mol. Biol., 228, 725–734.Google Scholar
  27. MuellerL. (1987) J. Magn. Reson., 72, 191–196.Google Scholar
  28. NémethyG., GibsonK.D., PalmerK.A., YoonC.N., PaterliniG., ZagariA., RumseyS. and ScheragaA. (1992) J. Phys. Chem., 96, 6472–6484.Google Scholar
  29. NeriD., SzyperskiT., OttingG., SennH. and WüthrichK. (1989) Biochemistry, 28, 7510–7516.Google Scholar
  30. OstlerG., SoteriouA., MoodyC.M., KhanJ.A., BirdsallB., CarrM.D., YoungD.W. and FeeneyJ. (1993) FEBS Lett., 318, 177–180.Google Scholar
  31. SchmidtJ.M., BrüschweilerR., ErnstR.R., DunbrackJr.R.L., JosephD. and KarplusM. (1993) J. Am. Chem. Soc., 115, 8747–8756.Google Scholar
  32. ThomassonK.A. and ApplequistJ. (1990) Biopolymers, 30, 437–450.Google Scholar
  33. WagnerG., BraunW., HavelT.F., SchaumannT., GõN. and WüthrichK. (1987) J. Mol. Biol., 196, 611–639.Google Scholar
  34. WeberP.L., MorrisonR. and HareD. (1988) J. Mol. Biol., 204, 483–487.Google Scholar
  35. WlodawerA., NachmanJ., GillilardG.L., GallagherW. and WoodwardC. (1987) J. Mol. Biol., 198, 469–480.Google Scholar
  36. ZuiderwegE.R.P., BoelensR. and KapteinR. (1985) Biopolymers, 24, 601–611.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Mengli Cai
    • 1
  • Ying Huang
    • 1
  • Jianhua Liu
    • 1
  • Ramaswamy Krishnamoorthi
    • 1
  1. 1.Department of BiochemistryKansas State UniversityManhattanU.S.A.

Personalised recommendations