Journal of Biomolecular NMR

, Volume 6, Issue 2, pp 113–122 | Cite as

Backbone dynamics of (1–71)- and (1–36)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy

  • Vladislav Yu. Orekhov
  • Konstantine V. Pervushin
  • Dmitry M. Korzhnev
  • Alexander S. Arseniev
Research Paper


The backbone dynamics of uniformly 15N-labelled fragments (residues 1–71 and 1–36) of bacterioopsin, solubilized in two media (methanol-chloroform (1:1), 0.1 M 2HCO2NH4, or SDS micelles) have been investigated using 2D proton-detected heteronuclear 1H-15N NMR spectroscopy at two spectrometer frequencies, 600 and 400 MHz. Contributions of the conformational exchange to the transverse relaxation rates of individual nitrogens were elucidated using a set of different rates of the CPMG spin-lock pulse train and were essentially suppressed by the high-frequency CPMG spin-lock. We found that most of the backbone amide groups of (1–71)bacterioopsin in SDS micelles are involved in the conformational exchange process over a rate range of 103 to 104 s-1. This conformational exchange is supposed to be due to an interaction between two α-helixes of (1–71)bacterioopsin, since the hydrolysis of the peptide bond in the loop region results in the disappearance of exchange line broadening. 15N relaxation rates and 1H-15N NOE values were interpreted using the model-free approach of Lipari and Szabo [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559]. In addition to overall rotation of the molecule, the backbone N-H vectors of the peptides are involved in two types of internal motions: fast, on a time scale <20 ps, and intermediate, on a time scale close to 1 ns. The intermediate dynamics in the α-helical stretches was mostly attributed to bending motions. A decrease in the order parameter of intermediate motions was also observed for residues next to Pro50, indicating an anisotropy of the overall rotational diffusion of the molecule. Distinctly mobile regions are identified by a large decrease in the order parameter of intermediate motions and correspond to the N- and C-termini, and to a loop connecting the α-helixes of (1–71)bacterioopsin. The internal dynamics of the α-helixes on the millisecond and nanosecond time scales should be taken into account in the development of a model of the functioning bacteriorhodopsin.


Bacteriorhodopsin Conformational exchange Dynamics Helix-helix interaction Micelles Relaxation Spatial structure 







Carr-Purcell-Meiboom-Gill (Carr and Purcell, 1954)


sodium dodecyl(2H25) sulfate

R(Sx), R(Sz)

15N transverse and longitudinal relaxation rates, respectively


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AbdulaevaG.V., SychevS.V. and TsetlinV.I. (1987) Bioorg. Khim., 4, 1254–1268.Google Scholar
  2. AbdulaevaG.V., SobolA.G., ArsenievA.S., TsetlinV.I. and BystrovV.F. (1991) Biol. Membr., 8, 30–43.Google Scholar
  3. AbragamA. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  4. ArsenievA.S., KuryatovA.B., TsetlinV.I., BystrovV.F., IvanovV.T. and OvchinnikovYu.A. (1987) FEBS Lett., 213, 283–288.CrossRefGoogle Scholar
  5. ArsenievA.S., MaslennikovI.V., KozhichA.T., BystrovV.F., IvanovV.T. and OvchinnikovYu.A. (1988) FEBS Lett., 231, 81–88.CrossRefGoogle Scholar
  6. BarchiJ.J., GrasbergerB., GronenbornA.M. and CloreG.M. (1994) Protein Sci., 3, 15–21.CrossRefGoogle Scholar
  7. BarsukovI.L., NoldeD.E., LomizeA.L. and ArsenievA.S. (1992) Eur. J. Biochem., 206, 665–672.CrossRefGoogle Scholar
  8. BaxA., SparksS.W. and TorchiaD.A. (1989) Methods Enzymol., 176, 134–150.CrossRefGoogle Scholar
  9. BloomM., ReevesL.W. and WellsE.J. (1965) J. Chem. Phys., 42, 1615–1624.ADSCrossRefGoogle Scholar
  10. CloreG.M., DriscollP.C., WingfieldP.T. and GronenbornA.M. (1990a) Biochemistry, 29, 7387–7401.CrossRefGoogle Scholar
  11. CloreG.M., SzaboA., BaxA., KayL.E., DriscollP.C. and GronenbornA.M., (1990b) J. Am. Chem. Soc., 112, 4989–4991.CrossRefGoogle Scholar
  12. CrespiH.L. (1982) Methods Enzymol., 88, 3–5.CrossRefGoogle Scholar
  13. DraheimJ.E., GibsonN.J. and CassimJ.Y. (1991) Biophys. J., 60, 89–100.CrossRefGoogle Scholar
  14. GrasbergerB.L., GronenbornA.M. and CloreG.M. (1993) J. Mol. Biol., 230, 364–372.CrossRefGoogle Scholar
  15. HendersonR., BaldwinJ.M., CeskaT.A., ZemlinF., BeckmannE. and DowningK.H. (1990) J. Mol. Biol., 213, 899–929.CrossRefGoogle Scholar
  16. KayL.E., TorchiaD.A. and BaxA. (1989) Biochemistry, 28, 8972–8979.CrossRefGoogle Scholar
  17. LipariG. and SzaboA. (1982) J. Am. Chem. Soc., 104, 4546–4559.CrossRefGoogle Scholar
  18. LomizeA.L., PervushinK.V. and ArsenievA.S. (1992) J. Biomol. NMR, 2, 361–372.CrossRefGoogle Scholar
  19. MaslennikovI.V., ArsenievA.S., KozhichA.T., BystrovV.F. and IvanovV.T. (1990) Biol. Membr., 8, 222–229.Google Scholar
  20. MaslennikovI.V., ArsenievA.S., ChikinL.D., KozhichA.T., BystrovV.F. and IvanovV.T. (1991a) Biol. Membr., 8, 156–160.Google Scholar
  21. MaslennikovI.V., LomizeA.L. and ArsenievA.S. (1991b) Bioorg. Khim., 17, 1456–1469.Google Scholar
  22. MaslennikovI.V., ArsenievA.S., ChikinL.D., KozhichA.T., BystrovV.F. and IvanovV.T. (1993) Bioorg. Khim., 19, 5–20.Google Scholar
  23. OrekhovV.Yu., AbdulaevaG.V., MusinaL. Yu. and ArsenievA.S. (1992) Eur. J. Biochem., 210, 223–229.CrossRefGoogle Scholar
  24. OrekhovV.Yu., PervushinK.V. and ArsenievA.S. (1994) Eur. J. Biochem., 219, 887–896.CrossRefGoogle Scholar
  25. OvchinnikovYu.A. (1982) FEBS Lett., 148, 179–191.CrossRefGoogle Scholar
  26. PalmerA.G., RanceM. and WrightP.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.CrossRefGoogle Scholar
  27. PalmerA.G. and CaseD.A. (1992) J. Am. Chem. Soc., 114, 9059–9067.CrossRefGoogle Scholar
  28. PalmerA.G., SkeltonN.J., ChazinW.J., WrightP.E., and RanceM. (1992) Mol. Phys., 75, 699–711.ADSCrossRefGoogle Scholar
  29. PengJ.W. and WagnerG. (1992) J. Magn. Reson., 98, 308–332.ADSGoogle Scholar
  30. PervushinK.V., ArsenievA.S., KozhichA.T. and IvanovV.T. (1991) J. Biomol. NMR, 1, 313–322.CrossRefGoogle Scholar
  31. PervushinK.V. and ArsenievA.S. (1992) FEBS Lett., 308, 190–196.CrossRefGoogle Scholar
  32. PervushinK.V., SobolA.G., MusinaL.Yu., AbdulaevaG.V. and ArsenievA.S. (1992) Mol. Biol. (USSR), 6, 1397–1415.Google Scholar
  33. PervushinK.V., OrekhovV.Yu., PopovA., MusinaL.Yu. and ArsenievA.S. (1994) Eur. J. Biochem., 219, 571–583.CrossRefGoogle Scholar
  34. PervushinK.V., OrekhovV.Yu., KorzhnevD.M. and ArsenievA.S. (1995) J. Biomol. NMR, 5, 383–396.CrossRefGoogle Scholar
  35. PopotJ.L. (1993) Curr Opin. Struct. Biol., 3, 532–540.CrossRefGoogle Scholar
  36. ReevesL.W. (1975) In Dynamic Nuclear Magnetic Resonance Spectroscopy (Eds, JackmanL.M. and CottonF.A.), Academic Press, New York, NY, pp. 83–130.CrossRefGoogle Scholar
  37. SeigneuretM., NeumannJ.M. and RigaudJ.L. (1991) J. Biol. Chem., 266, 10066–10069.Google Scholar
  38. Seigneuret, M., Levy, D. and Neumann J.M. (1992) In Abstracts of the Fifth International Conference on Retinal Proteins, Dourdan, France.Google Scholar
  39. SobolA.G., ArsenievA.S., AbdulaevaG.V., MusinaL.Yu and BystrovV.F. (1992) J. Biomol. NMR, 2, 161–171.CrossRefGoogle Scholar
  40. StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.ADSGoogle Scholar
  41. TorresJ. and PadrosE. (1993) FEBS Lett., 318, 77–79.CrossRefGoogle Scholar
  42. WagnerG. (1993) Curr. Opin. Struct. Biol., 3, 748–754.MathSciNetCrossRefGoogle Scholar
  43. WoessnerD. (1962) J. Chem. Phys., 37, 647–656.ADSCrossRefGoogle Scholar
  44. WoessnerD. (1969) J. Chem. Phys., 50, 719–721.ADSCrossRefGoogle Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Vladislav Yu. Orekhov
    • 1
  • Konstantine V. Pervushin
    • 1
  • Dmitry M. Korzhnev
    • 1
  • Alexander S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations