Journal of Biomolecular NMR

, Volume 5, Issue 3, pp 315–320

Novel three-dimensional 1H−13C−31P triple resonance experiments for sequential backbone correlations in nucleic acids

  • Gabriele Varani
  • Fareed Aboul-ela
  • Frederic Allain
  • Charles C. Gubser
Short Communications

Summary

Backbone-driven assignment methods that utilize covalent connectivities have greatly facilitated spectral assignments of proteins. In nucleic acids, 1H−13C−31P correlations could play a similar role, and several related experiments (HCP) have recently been presented for backbone-driven sequential assignments in RNA. The three-dimensional extension of 1H−31P Het-Cor (P,H-COSY-H,C-HMQC) and Het-TOCSY (P,H-TOCSY-H,C-HMQC) experiments presented here complements HCP experiments as tools for spectral assignments and extraction of dihydral angle constraints. By relying on 1H−31P rather than 13C−31P couplings to generate cross peaks, the strongest connectivities are observed in different spectral regions, increasing the likelihood of resolving spectral overlap. In addition, semiquantitative estimates of 1H−31P and 13C−31P couplings provide dihedral angle constraints for RNA structure determination.

Keywords

1H−13C−31P correlation RNA structure determination Dihedral angle constraints Spectral assignments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altona, C. (1982) Recl. Trav. Chim. Pays-Bas, 101, 413–433.Google Scholar
  2. Gehring, K., Leroy, J.-L. and Gueron, M. (1993) Nature, 363, 561–565.Google Scholar
  3. Heus, H.A., Wijmenga, S.S., Van deVen, F.J.M. and Hilbers, C.W. (1994) J. Am Chem. Soc., 116, 4983–4984.Google Scholar
  4. Hines, J.V., Landry, S.M., Varani, G. and TinocoJr., I. (1994) J. Am. Chem. Soc., 116, 5823–5831.Google Scholar
  5. Hines, J.V., Varani, G., Landry, S.M. and TinocoJr., I. (1993) J. Am. Chem. Soc., 115, 11002–11003.Google Scholar
  6. Kellogg, G.W. (1992) J. Magn. Reson., 98, 176–182.Google Scholar
  7. Kellogg, G.W. and Schweitzer, B.I. (1993) J. Biomol. NMR, 3, 577–595.Google Scholar
  8. Kellogg, G.W., Szewczak, A.A. and Moore, P.B. (1992) J. Am. Chem. Soc. 114, 2727–2728.Google Scholar
  9. Marino, J.P., Schwalbe, H., Anklin, C., Bermel, W., Crothers, D.M. and Griesinger, C. (1994) J. Am. Chem. Soc., 116, 6472–6473.Google Scholar
  10. Marino, J.P., Schwalbe, H., anklin, C., Bermel, W., Crothers, D.M. and Griesinger, C. (1995) J. Biomol. NMR, 5, 87–92.Google Scholar
  11. Mooren, M.M.W., Wijmenga, S.S., Van derMarel, G.A., VanBoom, J.H. and Hilbers, C.W. (1994) Nucleic Acids Res., 22, 2658–2666.Google Scholar
  12. Nikonowicz, E.P. and Pardi, A. (1993) J. Mol. Biol., 232, 1141–1156.Google Scholar
  13. Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer Verlag, New York, NY.Google Scholar
  14. Schmieder, P., Ippel, J.H., Van denElst, H., Van derMarel, G.A., VanBoom, J.H., Altona, C. and Kessler, H. (1992) Nucleic Acids Res., 20, 4747–4751.Google Scholar
  15. Schwalbe, H., Marino, J.P., King, G.C., Wechselberger, R., Bermel, W. and Griesinger, C., (1994) J. Biomol. NMR, 4, 631–644.Google Scholar
  16. Schwalbe, H., Samstag, W., Engels, J.W., Bermel, W. and Griesinger, C. (1993) J. Biomol. NMR, 3, 479–486.Google Scholar
  17. Shaka, A.J., Barker, P. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.Google Scholar
  18. Sklenář, V., Miyashiro, H., Zon, G. and Bax, A. (1986) FEBS Lett., 208, 94–98.Google Scholar
  19. Szewczak, A.A., Moore, P.B., Chan, Y.-L. and Wool, I.G. (1993) Proc. Natl. Acad. Sci. USA, 90, 9581–9585.Google Scholar
  20. Tate, S.-I., Ono, A. and Kainosho, M. (1995) J. Magn. Reson. Ser. B, 106, 89–91.Google Scholar
  21. VanGelder, C.W.G., Gunderson, S.I., Jansen, E.J.R., Boelens, W.C., Polycarpou-Schwartz, M., Mattaj, I.W. and Vanvenrooij, W.J., (1993) EMBO J., 12 5191–5200.Google Scholar
  22. Varani, G., Cheong, C. and TinocoJr., I. (1991) Biochemistry 30, 3280–3289.Google Scholar
  23. Varani, G. and TinocoJr., I. (1991a) J. Am. Chem. Soc., 113, 9349–9354.Google Scholar
  24. Varani, G. and TinocoJr., I. (1991b) Q.Rev. Biophys., 24, 479–532.Google Scholar
  25. Wijmenga, S.S., Heus, H.A., Leeuw, H.A.E., Hoppe, H., Van derGraaf, M. and Hilbers, C.W. (1995) J. Biomol. NMR, 5, 82–86.Google Scholar
  26. Wimberly, B.T. (1992) Ph.D. Thesis, University of California, Berkeley, CA.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • Gabriele Varani
    • 1
  • Fareed Aboul-ela
    • 1
  • Frederic Allain
    • 1
  • Charles C. Gubser
    • 1
  1. 1.MRC Laboratory of Molecular BiologyCambridgeU.K.

Personalised recommendations