Journal of Biomolecular NMR

, Volume 5, Issue 3, pp 245–258 | Cite as

Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data

  • Roger A. Chylla
  • John L. Markley
Research Papers

Summary

A general theory has been developed for the application of the maximum likelihood (ML) principle to the estimation of NMR parameters (frequency and amplitudes) from multidimensional time-domain NMR data. A computer program (ChiFit) has been written that carries out ML parameter estimation in the D-1 indirectly detected dimensions of a D-dimensional NMR data set. The performance of this algorithm has been tested with experimental three-dimensional (HNCO) and four-dimensional (HN(CO)-CAHA) data from a small protein labeled with 13C and 15N. These data sets, with different levels of digital resolution, were processed using ChiFit for ML analysis and employing conventional Fourier transform methods with prior extrapolation of the time-domain dimensions by linear prediction. Comparison of the results indicates that the ML approach provides superior frequency resolution compared to conventional methods, particularly under conditions of limited digital resolution in the time-domain input data, as is characteristic of D-dimensional NMR data of biomolecules. Close correspondence is demonstrated between the results of analyzing multidimensional time-domain NMR data by Fourier transformation, Bayesian probability theory [Chylla, R.A. and Markley, J.L. (1993) J. Biomol. NMR, 3, 515–533], and the ML principle.

Keywords

Maximum likelihood Data processing Least-squares analysis Parameter extraction Model fitting 

Abbreviations

FT

Fourier transformation

ML

maximum likelihood

MLD

minimum description length

FID

free induction decay

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkhuijsen, J., DeBeer, W.M., Bovee, W.M.M.J. and VanOrmondt, D. (1985) J. Magn. Reson., 61, 465–481.Google Scholar
  2. Bloch, F., Hansen, W.W. and Packard, M.E. (1946) Phys. Rev., 70, 460–474.CrossRefGoogle Scholar
  3. Bretthorst, G.L. (1990a) J. Magn. Reson., 88, 533–551.Google Scholar
  4. Bretthorst, G.L. (1990b) J. Magn. Reson., 88, 552–570.Google Scholar
  5. Bretthorst, G.L. (1990c) J. Magn. Reson., 88, 571–595.Google Scholar
  6. Chylla, R.A. (1994) unpublished documentation. Available through the National Magnetic Resonance Facility (NMRFAM) software section of the Internet GOPHER utility at gopher://gopher.nmrfam. wisc.edu/11/Software/Chifit.Google Scholar
  7. Chylla, R.A. and Markley, J.L. (1993) J. Biomol. NMR, 3, 515–533.Google Scholar
  8. Gesmar, H. and Led, J.J. (1989) J. Magn. Reson., 83, 53–64.Google Scholar
  9. Girvin, M.E. and Fillingame, R.H. (1993) Biochemistry, 32, 12167–12177.Google Scholar
  10. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.Google Scholar
  11. Kay, L.E., Wittekind, M., McCoy, M.A., Friedrichs, M.S. and Mueller, L. (1992) J. Magn. Reson., 98, 443–450.Google Scholar
  12. Kumaresan, R. and Tufts, D.W. (1982) IEEE Trans. Acoust. Speech Signal Processing, 30, 833–840.Google Scholar
  13. Led, J.J. and Gesmar, H. (1991) J. Biomol. NMR, 1, 237–246.Google Scholar
  14. Marquardt, D.W. (1963) J. Soc. Ind. Appl. Math., 11, 431–441.Google Scholar
  15. Miller, M.I. and Greene, A.S. (1989) J. Magn. Reson., 83, 525–548.Google Scholar
  16. Miller, M.I., Chen, S.C., Kuefler, D.A. and D'Avignon, D.A. (1993) J. Magn. Reson. Ser. A, 104, 247–257.Google Scholar
  17. Mooberry, E.S., Abildgaard, F. and Markley, J.L. (1994) Methods Enzymol., 2, 247–256.Google Scholar
  18. OlsonJr., J.B. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385–410.Google Scholar
  19. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988) Numerical Recipes in C, Cambridge University Press, New York, NY, pp. 540–547.Google Scholar
  20. Reddy, V.U. and Birader, L.S. (1993) IEEE Trans. Signal Processing, 41, 2872–2881.Google Scholar
  21. Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • Roger A. Chylla
    • 1
  • John L. Markley
    • 1
  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations