Advertisement

Human Genetics

, Volume 94, Issue 5, pp 491–496 | Cite as

Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma

  • Valerie Greger
  • Nils Debus
  • Dietmar Lohmann
  • Wolfgang Höpping
  • Eberhard Passarge
  • Bernhard Horsthemke
Original Investigation

Abstract

The retinoblastoma susceptibility (RB1) gene contains an unmethylated CpG-rich island at its 5′ end. Using methylation-sensitive restriction enzymes, we have investigated the methylation status of this island in 21 sporadic unilateral retinoblastomas and 30 hereditary retinoblastomas. Three sporadic unilateral tumors were found to have hypermethylated RB1 alleles. In two tumors, the paternal allele was methylated, whereas the maternal allele had been lost. Cultured cells from one of these tumors were studied by the reverse transcription polymerase chain reaction and found to have a reduced level of RB1 mRNA. The third tumor had retained constitutional heterozygosity, and the paternal allele was specifically methylated. The combined data from previously published reports and from this study show that hypermethylation of the RB1 gene occurs in 13% of sporadic unilateral tumors and may reduce gene activity.

Keywords

Methylated Polymerase Chain Reaction Internal Medicine Reverse Transcription Restriction Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belka C, Greger V, Zabel B, Horsthemke B (1991) No evidence for sequences structurally related to the RB1 gene in the human genome. Hum Genet 86:401–403Google Scholar
  2. Bookstein RB, Lee EY-HP, To H, Young L-J, Sery TW, Hayes RC, Friedmann T, Lee W-H (1988) Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants. Proc Natl Acad Sci USA 85:2210–2214Google Scholar
  3. Carothers AM, Urlaub G, Mucha J, Grunberger D, and Chasin LA (1989) Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA, and Taq sequencing by a novel method. Biotechniques 7:494–499Google Scholar
  4. Cedar H (1988) DNA methylation and gene activity. Cell 53:3–4Google Scholar
  5. Greger V, Kerst S, Messmer E, Höpping W, Passarge E, Horsthemke B (1988) Application of linkage analysis to genetic counselling in families with hereditary retinoblastoma. J Med Genet 25:217–221Google Scholar
  6. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158Google Scholar
  7. Griegel S, Hong C, Frötschl R, Hülser DF, Greger V, Horsthemke B, Rajewsky MF (1990) Newly established human retinoblastoma cell lines exhibit an “immortalized” but not an invasive phenotype in vitro. Int J Cancer 46:125–132Google Scholar
  8. Holliday R (1987) The inheritance of epigenetic defects. Science 238:197–190Google Scholar
  9. Horsthemke B (1992) Genetics and cytogenetics of retinoblastoma. Cancer Genet Cytogenet 63:1–7Google Scholar
  10. Kloss K, Währisch P, Greger V, Messmer E, Fritze H, Höpping W, Passarge E, Horsthemke B (1991) Characterization of deletions at the retinoblastoma locus in patients with bilateral retinoblastoma. Am J Med Genet 39:196–200Google Scholar
  11. Kunkel LM, Smith KD, Boyer SH, Borgaonkor DS, Wachtel SS, Miller OJ, Breg WR, Jones HW, Rary JM (1977) Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 74:1245–1249PubMedGoogle Scholar
  12. Lohmann D, Horsthemke B, Gillessen-Kaesbach G, Stefani FH, Höfler H (1992) Detection of small RB1 gene deletions in retinoblastoma by multiplex PCR and high-resolution gel electrophoresis. Hum Genet 89:49–53Google Scholar
  13. McGee TL, Yandell DW, Dryja TP (1989) Structure and partial genomic sequence of the human retinoblastoma susceptibility gene. Gene 80:119–128Google Scholar
  14. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T (1993) CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8:1063–1067Google Scholar
  15. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48:880–888Google Scholar
  16. Shmookler-Reis RJ, Goldstein S (1982) Interclonal variation in methylation patterns for expressed and non-expressed genes. Nucleic Acids Res 10:4293–4304Google Scholar
  17. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, Dryja TP (1993) Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics 17:535–543Google Scholar
  18. Wiggs J, Nordenskjöld M, Yandell D, Rapaport J, Grondin V, Janson M, Werelius B, Petersen R, Craft A, Riedel K, Liberfarb R, Walton D, Wilson W, Dryja TP (1988) Prediction of the risk of hereditary retinoblastoma, using DNA polymorphisms within the retinoblastoma gene. N Engl J Med 318:151–157Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Valerie Greger
    • 1
  • Nils Debus
    • 1
    • 2
  • Dietmar Lohmann
    • 1
  • Wolfgang Höpping
    • 3
  • Eberhard Passarge
    • 1
  • Bernhard Horsthemke
    • 1
  1. 1.Institut für Humangenetik, Universitätsklinikum EssenEssenGermany
  2. 2.Institut für Zellbiologie (Tumorforschung), Universitätsklinikum EssenEssenGermany
  3. 3.Zentrum für AugenheilkundeUniversitätsklinikum EssenEssenGermany

Personalised recommendations