Human Genetics

, Volume 90, Issue 1–2, pp 12–16 | Cite as

Detection of seven point mutations in the porphobilinogen deaminase gene in patients with acute intermittent porphyria, by direct sequencing of in vitro amplified cDNA

  • C. S. Mgone
  • W. G. Lanyon
  • M. R. Moore
  • J. M. Connor
Original Investigations


Direct cDNA sequencing has been performed on asymmetrically amplified transcripts from the human porphobilinogen deaminase gene. Lymphocytes from 30 patients with acute intermittent porphyria were the source of mRNA; of the seven separate point mutations detected, three were silent, whereas four resulted in amino acid changes. Three of these changes involved highly conserved amino acids, and the remaining one a conserved charge. One of these mutations was predicted to cause structural alterations in the protein product. The application of this method to affected families allows the direct identification of these heterogeneous mutations, thus permitting the unequivocal detection of carriers.


Internal Medicine Metabolic Disease Point Mutation Protein Product cDNA Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson KE, Sassa S, Peterson CM, Kappas A (1977) Increased erythrocyte uropophyrinogen-I-synthetase, delta-aminolevulinic acid dehydratase and protoporphyrin in hemolytic anemias. Am J Med 63:359–374Google Scholar
  2. Beaumont C, Porcher C, Picat C, Nordmann Y, Grandchamp B (1989) The mouse porphobilinogen deaminase gene: structural organisation, sequence and transcriptional analysis. J Biol Chem 264:14829–14834Google Scholar
  3. Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Rev Biochem 47:251–276Google Scholar
  4. Chretien S, Dubart A, Beaupain D, Raich N, Grandchamp B, Rosa J, Goossens M, Romeo PH (1988) Alternative transcription and splicing of the human porphobilinogen deaminase gene results either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci USA 85:6–10Google Scholar
  5. Cotton RGH, Rodrigues NR, Campbell RD (1988) Reactivity of thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci USA 85:4397–4401Google Scholar
  6. Delfau MH, Picat C, Rooij FWM de, Hamer K, Bogard M, Wilson JH, Deybach JC, Nordmann M, Grandchamp B (1990) Two different point G to A mutations in exon 10 of porphobilinogen deaminase gene are responsible for acute intermittent porphyria. J Clin Invest 86:1511–1516Google Scholar
  7. Delfau MH, Picat C, Rooij FWM de, Voortman G, Deybach JC, Nordmann B, Grandchamp B (1991) Molecular heterogeneity of acute intermittent porphyria: identification of four additional mutations resulting in CRIM-negative subtype of the disease. Am J Hum Genet 49:421–428Google Scholar
  8. Desnick RJ, Ostasiewicz LJ, Tishler PA, Mustajoki P (1985) Acute intermuttent porphyria: characterization of a novel mutation in the structural gene for porphobilinogen deaminase. J Clin Invest 76:505–509Google Scholar
  9. Grandchamp B, Picat C. Mignotte V, Wilson JHP, Velde K te, Sankuyl L, Romeo PH, Gossens M, Nordmann Y (1989a) Tissue-specific splicing mutation in acute intermittent porphyria. Proc Natl Acad Sci USA 86:661–664Google Scholar
  10. Grandchamp B, Picat C, Kauppinen R, Mignotte V, Peltonen L, Mustajoki P, Romeo PH, Gossens M, Nordmann Y (1989b) Molecular analysis of acute intermittent porphyria in a Finnish family with normal erythrocyte porphobilinogen deaminase. Eur J Clin Invest 19:415–418Google Scholar
  11. Grandchamp B, Picat C, Rooij F de, Beumont C, Deybach JC, Nordmann Y (1989c) A point mutation G→A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res 17:6637–6649Google Scholar
  12. Kappas A, Sassa S, Anderson KE (1983) The porphyrias. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 1301–1384Google Scholar
  13. Kauppinen R, Peltonen L, Palotie A, Mustajoki P (1990) RFLP analysis of three different types of acute intermittent porphyria. Hum Genet 85:160–164Google Scholar
  14. Lee J-S (1991) Molecular genetic investigation of the human porphobilinogen deaminase gene in acute intermittent porphyria. Repro Print, Stockholm, pp 8–50Google Scholar
  15. Lee J-S, Grandchamp B, Anveret M (1990) A point mutation of human porphobilinogen deaminase gene in a Swedish family with acute intermittent porphyria (abstract). Am J Hum Genet [Suppl] 47:A162Google Scholar
  16. McColl KEL, Moore MR, Goldberg A (1986) The porphyrias. In: Rakel RE (eds) Conn's current therapy. Saunders, Philadelphia, pp 349–357Google Scholar
  17. Moore M (1983) Laboratory investigation of disturbances of porphyrin metabolism. In: Association of Clinical Pathologists Broadsheet Number 109, BMA, London, pp 1–16Google Scholar
  18. Moore MR, McColl KEL, Rimington C, Goldberg A (1987) The acute porphyrias. In: Disorders of porphyrin metabolism. Plenum, London, pp 73–117Google Scholar
  19. Mustajoki P, Desnick RJ (1985) Genetic heterogeneity in acute intermittent porphyria: characterisation and frequency of porphobilinogen deaminase mutations in Finland. BMJ 291:505–509Google Scholar
  20. Nordmann Y, Verneuil H de, Deybach JC, Delfau MH, Grandchamp B (1990) Molecular genetics of porphyrias. Ann Med 2:387–391Google Scholar
  21. Orita O, Iwihana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770PubMedGoogle Scholar
  22. Picat C, Delfau MH, Rooij FWM de, Beukelveld GJJ, Wolthers BG, Wadman SK, Nordmann Y, Grandchamp B (1990) Identification of mutations in the parents of a patient with a putative compound heterozygosity for acute intermittent porphyria. J Inherited Metab Dis 13:684–686Google Scholar
  23. Picat C, Bourgeois F, Grandchamp B (1991) PCR detection of a C/T polymorphism in exon 1 of the porphobilinogen deaminase gene (PBGD). Nucleic Acids Res 19:5099Google Scholar
  24. Piepkotn MW, Hamernyik P, Labbe RF (1983) Modified erythrocyte uroporphyrinogen-1 -synthase assay and its clinical interpretation. Clin Chem 24:1751–1754Google Scholar
  25. Raich N, Romeo PH, Dubart A, Beaupain D, Cohen-Solal M, Goossens M (1986) Molecular cloning and complete primary sequence of the human erythrocyte porphobilinogen deaminase. Nucleic Acids Res 14:5955–5968Google Scholar
  26. Scobie GA, Llewellyn DH, Urquhart AJ, Smyth SJ, Kalsheker NA, Harrison PR, Elder GH (1990a) Acute intermittent porphyria caused by a C to T mutation that produces a stop codon in the porphobilinogen deaminase gene. Hum Genet 85:631–634Google Scholar
  27. Scobie GA, Urquhart AJ, Elder GH, Kalsherker NA, Llewellyn DH, Smyth J, Harrison PR (1990b) Linkage disequilibrium between DNA polymorphisms within the porphobilinogen deaminase gene. Hum Genet 85:157–159Google Scholar
  28. Sharif AL, Smith AG, Abell C (1989) Isolation and characterisation of a cDNA clone for chlorophyll synthesis enzyme in Euglina glacilis. Eur J Biochem 84:353–359Google Scholar
  29. Stubnicer AC, Picat C, Grandchamp B (1988) Rat porphobilinogen deaminase cDNA: nucleotide sequence of the erythropoietic form. Nucleic Acids Res 16:3102Google Scholar
  30. Thomas SD, Jordan P (1986) Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K 12. Nucleic Acids Res 14:6215–6226Google Scholar
  31. Traystman HD, Higuchi M, Kasper CK, Antonarakis SE, Kazazian HH Jr (1990) Use of denaturing gel electrophoresis to detect point mutation in the factor VIII gene. Genomics 6:293–301Google Scholar
  32. Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, Goodman HM (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313Google Scholar
  33. Wolf H, Modrow S, Motz M, Jameson BA, Hermann G, Fortsch B (1988) An integrated family of amino acid sequence analysis programs. Comput Appl Biosci 4:187–197Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. S. Mgone
    • 1
  • W. G. Lanyon
    • 1
  • M. R. Moore
    • 2
  • J. M. Connor
    • 1
  1. 1.Duncan Guthrie Institute of Medical GeneticsYorkhillUK
  2. 2.Porphyria Research Unit, University Department of Medicine and TherapeuticsGardiner Institute, Western InfirmaryUK

Personalised recommendations