, Volume 3, Issue 2, pp 69–73

Determination of mannitol in ectomycorrhizal fungi and ectomycorrhizas by enzymatic micro-assays

  • Astrid Wingler
  • Martin Guttenberger
  • Rüdiger Hampp
Original Papers


Two sensitive methods for the enzymatic determination of mannitol are described which were applied to fungal and mycorrhizal extracts. Both methods are based on the oxidation of mannitol by mannitol dehydrogenase from Agaricus hortensis and the fluorometric determination of the NADPH produced in this reaction. The detection limits are 125 pmol for the direct fluorometric assay and 100 fmol, when enzymatic cycling of NADPH is included. The levels of mannitol detected were 123 pmol/μg dry wt (mycelia from Cenococcum geophilum, cultivated on malt medium), below 0.3 or about 2.4 pmol/μg dry wt (mycelia from Amanita muscaria, dependent on carbon source in the cultivation medium), and between 1.9 and 5.2 pmol/μg dry wt in mycorrhizal short roots of Picea abies/Amanita muscaria.

Key words

Amanita Cenococcum Enzymatic cycling Mannitol determination Mycorrhiza 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berezenko S, Sturgeon RJ (1991) The enzymic determination of D-mannitol with mannitol dehydrogenase from Agaricus hortensis. Carbohydr Res 216:505–509Google Scholar
  2. Blood J, Ingle AR, Allison N, Davies GR, Hill PG (1991) Rapid enzymatic method for the measurement of mannitol in urine. Ann Clin Biochem 28:401–406Google Scholar
  3. Blumenthal HJ (1976) Reserve carbohydrates in fungi. In: Smith JE, Berry DR (eds) Biosynthesis and metabolism. (The filamentous fungi, vol 2) Arnold, London, pp 292–307Google Scholar
  4. Edmundowicz JM, Wriston JC (1963) Mannitol dehydrogenase from Agaricus campestris. J Biol Chem 238:3539–3541Google Scholar
  5. Guttenberger M (1989) Untersuchungen zur Biochemie der Pilz-Baumwurzel-Symbiose. Proteinanalytik im Mikromaßstab. PhD thesis, University of TübingenGoogle Scholar
  6. Guttenberger M, Hampp R (1992) Ectomycorrhizins — symbiosis-specific or artifactual polypeptides from ectomycorrhizas? Planta 188:129–136Google Scholar
  7. Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus hortensis (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. J Gen Microbiol 93:309–320Google Scholar
  8. Hult K, Gatenbeck S (1978) Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur J Biochem 88:607–612Google Scholar
  9. Jennings DH (1984) Polyol metabolism in fungi. Adv Microb Physiol 25:149–193Google Scholar
  10. Jirjis R, Ramstedt M, Söderhäll K (1986) Mannitol does not inhibit glycolytic enzymes in roots of Pinus sylvestris and Fagus orientalis. New Phytol 102:285–291Google Scholar
  11. Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1:191–194Google Scholar
  12. Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol 64:256–269Google Scholar
  13. Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. New Phytol 66:143–184Google Scholar
  14. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New YorkGoogle Scholar
  15. Martin F, Canet D, Marchal JP (1985) 13C nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum graniforme. Plant Physiol 77:499–502Google Scholar
  16. Martin F, Ramstedt M, Söderhäll K, Canet D (1988) Carbohydrate and amino acid metabolism in the ectomycorrhizal ascomycete Sphaerosporella brunnea during glucose utilization. A 13C NMR study. Plant Physiol 86:935–940Google Scholar
  17. Martin F, Delaruelle C, Hilbert J-L (1990) An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycol Res 94:1059–1064Google Scholar
  18. Moser M (1983) Die Röhrlinge und Blätterpilze. (Kleine Kryptogamenflora, Band IIb/2) Fischer, Stuttgart New YorkGoogle Scholar
  19. Neuhoff V, Philipp K, Zimmer H-G, Mesecke S (1979) A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Hoppe-Seyler's Z Physiol Chem 360:1657–1670MathSciNetMATHGoogle Scholar
  20. Niederer M (1989) Ektomykorrhiza von Bestandsfichten: die jahreszeitliche Dynamik löslicher Kohlenhydrate und ihre Bedeutung als Vitalitätsindikatoren. PhD thesis, University of BaselGoogle Scholar
  21. Nylund J-E, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. Methods Microbiol 24:77–88Google Scholar
  22. Pons S, Mudge KW, Negm FB (1986) Effect of mannitol on the in vitro growth, temperature optimum and subsequent ectomycorrhizal infectivity of Pisolithus tinctorius. Can J Bot 64:1812–1816Google Scholar
  23. Ramstedt M, Niehaus WG, Söderhäll K (1986) Mannitol metabolism in the mycorrhizal fungus, Piloderma croceum. Exp Mycol 10:9–18Google Scholar
  24. Ramstedt M, Jirjis R, Söderhäll K (1987) Metabolism of mannitol in mycorrhizal and non-mycorrhizal fungi. New Phytol 105:281–287Google Scholar
  25. Rieger A, Guttenberger M, Hampp R (1992) Soluble carbohydrates in mycorrhized and non-mycorrhized fine roots of spruce seedlings. Z Naturforsch 47c:201–204Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Astrid Wingler
    • 1
  • Martin Guttenberger
    • 1
  • Rüdiger Hampp
    • 1
  1. 1.Physiologische Ökologie der Pflanzen, Universität TübingenTübingenGermany

Personalised recommendations