Advertisement

Human Genetics

, Volume 96, Issue 6, pp 651–654 | Cite as

Proliferation enhancement by spontaneous multiplication of chromosome 7 in rheumatic synovial cells in vitro

  • Ayhan Ermis
  • Wolfram Henn
  • Klaus Remberger
  • Christof Hopf
  • Thomas Hopf
  • Klaus D. Zang
Original Investigation

Abstract

Mosaic trisomy of chromosome 7 is known to occur in a variety of non-neoplastic hyperproliferative disorders. In long-term cell cultures established from rheumatic synovium with mosaic trisomy 7, we observed a continuous increase in the proportion of cells with trisomy 7 to over 50% by the 10th in vitro passage. Simultaneous in situ hybridization with a repetitive chromosome-7-specific DNA probe and fluorescent Ki-67 labelling showed a strong correlation between trisomy 7 and an elevated proliferation index in cultured rheumatic synovial cells. Moreover, we observed a fraction of rapidly proliferating cells with up to eight copies of chromosome 7 as the sole cytogenetic change. Frequent somatic pairing of centromeres of two chromosomes 7 in interphase nuclei suggests either atypical non-disjunction with a persisting centromere or selective endoreduplication of chromosome 7.

Keywords

Cell Culture Internal Medicine Strong Correlation Metabolic Disease Proliferation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dal Cin P, Aly MS, Delabie JL, Ceuppens JL, Gool S van, Damme B van, Baert L, Poppel H van, Berghe H van den (1992) Trisomy 7 and trisomy 10 characterize subpopulations of tumor- infiltrating lymphocytes in kidney tumors and in the surrounding kidney tissue. Proc Natl Acad Sci USA 89:9744–9748Google Scholar
  2. Elfving P, Aman P, Mandahl N, Lundgren R, Mitelman F (1995) Trisomy 7 in nonneoplastic epithelial kidney cells. Cytogenet Cell Genet 69:90–96Google Scholar
  3. Emanuel A, Scücs S, Weier HG, Kovacs G (1992) Clonal aberrations of chromosomes X,Y,7 and 10 in normal kidney tissue of patients with renal cell tumors. Genes Chromosom Cancer 4:75–77Google Scholar
  4. Ermis A, Hopf T, Hanselmann R, Remberger K, Welter C, Dooley S, Zang KD, Henn W (1993) Clonal chromosome aberrations in cell cultures of synovial tissue from patients with rheumatoid arthritis. Genes Chromosom Cancer 6:232–234Google Scholar
  5. Fletcher JA, Henkle C, Atkins L, Rosenberg AE, Morton CC (1992) Trisomy 5 and trisomy 7 are nonrandom aberrations in pigmented villonodular synovitis: confirmation of trisomy 7 in uncultured cells. Genes Chromosom Cancer 4:264–266Google Scholar
  6. Heim S, Mandahl N, Jin Y, Strömblad S, Lindström E, Salford LG, Mitelman F (1989) Trisomy 7 and sex chromosome loss in human brain tissue. Cytogenet Cell Genet 52:136–138Google Scholar
  7. Henn W, Blin N, Zang KD (1986) Polysomy of chromosome 7 is correlated with overexpression of the erbB oncogene in human glioblastoma cell lines. Hum Genet 74:104–106Google Scholar
  8. Hopman AHN, Ramaekers FCS, Raap AK, Beck JLM, Devilee P, Ploeg M van der, Voojs GP (1988) In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry 89:307–316Google Scholar
  9. Johansson B, Heim S, Mandahl N, Mertens F, Mitelman F (1993) Trisomy 7 in nonneoplastic cells. Genes Chromosom Cancer 6:199–205Google Scholar
  10. Kovacs G, Fuzesi L, Emanuel A, Kung H (1991) Cytogenetics of papillary renal cell tumors. Genes Chromosom Cancer 3:249–255Google Scholar
  11. Naeem R, Donovan K, Corson JM, Fletcher JA (1993) Fluorescent in situ hybridization assessment of chromosome 7 copy number in uncultured lung and kidney cells. Cancer Genet Cytogenet 66:100–102Google Scholar
  12. Neurath P, Remer KDE, Bell B, Jarvik L, Kalo T (1970) Chromosome loss compared with chromosome size, age and sex of subjects Nature 225:281–282Google Scholar
  13. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 11:971–972Google Scholar
  14. Steilen H, Burk U, Zwergel T, Wullich B, Unteregger G (1994) Simultaneous characterization of in vitro growing cells by fluorescence in situ hybridization (FISH) and Ki-67 labeling. Anal Cell Pathol 6:83–87Google Scholar
  15. Vanni R, Cossu L, Licheri S (1990) Atherosclerotic plaque as a benign tumor? Cancer Genet Cytogenet 47:273–274Google Scholar
  16. Waldman FW, Carroll PR, Kerschman R, Cohen MB, Field FG, Mayall BH (1991) Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res 51:3807–3813Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ayhan Ermis
    • 1
  • Wolfram Henn
    • 1
  • Klaus Remberger
    • 2
  • Christof Hopf
    • 4
  • Thomas Hopf
    • 3
  • Klaus D. Zang
    • 1
  1. 1.Institut für Humangenetik, Universität des SaarlandesHomburg/SaarGermany
  2. 2.Institut für Pathologie, Universität des SaarlandesHomburg/SaarGermany
  3. 3.Orthopädische Klinik, Universität des SaarlandesHomburg/SaarGermany
  4. 4.Orthopädische UniversitätsklinikMainzGermany

Personalised recommendations