Physics and Chemistry of Minerals

, Volume 16, Issue 8, pp 741–746 | Cite as

Dielectric constants of BeO, MgO, and CaO using the two-terminal method

  • M. A. Subramanian
  • R. D. Shannon
  • B. H. T. Chai
  • M. M. Abraham
  • M. C. Wintersgill


Using fused SiO2, CaF2, and SrF2 samples with accurately known dielectric constants, we have evaluated the accuracy and precision of two-terminal dielectric constant measurements on small single crystals using empirically determined edge corrections. Values of κ′ at 1 MHz of 3.836±0.05 for silica, 6.814±0.07 for CaF2 and 6.463±0.09 for SrF2 indicate an accuracy and precision of 1.0–1.5% for samples having areas of 0.05–1.0 cm2. Dielectric constants of BeO, MgO, and CaO measured by this technique are: BeO, κ′a=6.87 and κ′c=7.74; MgO, κ′= 9.90; and CaO, κ′=11.95 where κ′a and κ′c are the dielectric constants parallel to the a and c axes, respectively. Dielectric loss measurements on CaO in vacuum between 5–400 K at 10–105 Hz indicate significant dispersion at temperatures higher than 300 K, but the effect of the losses on the dielectric constant is less than 1% at 1 MHz and 300 K.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham MM, Butler CT, Chen Y (1971) Growth of high-purity and doped alkaline-earth oxides: I. MgO and CaO. J Chem Phys 55:3752–3756Google Scholar
  2. ASTM (1981) Standard Test Methods for A-C loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials, D150–81, American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  3. Andeen C, Fontanella J (1977) The dielectric spectrum of europium doped CaF2. J Phys Chem Solids 38:237–241Google Scholar
  4. Andeen C, Fontanella J, Schuele D (1970) Accurate determination of the dielectric constant by the method of substitution. Rev Sci Instrum 41:1573–1576CrossRefGoogle Scholar
  5. Andeen C, Fontanella J, Schuele D (1971) Low-frequency dielectric constants of the alkaline earth fluorides by the method of substitution. J Appl Phys 42:2216–2219CrossRefGoogle Scholar
  6. Andeen C, Schuele D, Fontanella J (1974) Effect of OH on the low-frequency dielectric constant of vitreous silica. J Appl Phys 45:1071–1074CrossRefGoogle Scholar
  7. Andeen CG, Fontanella JJ, Wintersgill MC, Welcher PJ, Kimble RJ, Matthews GE (1981) Clustering in rare-earth-doped alkaline earth fluorides. J Phys C 14:3557–3574CrossRefGoogle Scholar
  8. Arguelo CA, Rousseau DL, Porto SP (1969) First order Raman effect in wurtzite-type crystals. Phys Rev 181:1351–1363Google Scholar
  9. Austerman SB (1963) Polar properties of BeO single crystals. J Appl Phys 34:339–341CrossRefGoogle Scholar
  10. Bartels RA, Smith PA (1973) Pressure and temperature dependence of the static dielectric constants of KCl, NaCl, LiF and MgO. Phys Rev B7:3885–3891Google Scholar
  11. Bartels RA, Koo JC, Thomas ML (1979) The temperature and pressure dependence of the dielectric constants of CaO and SrO. Phys Status Solidi 52A:K213–216Google Scholar
  12. Boslough MB, Ahrens TJ (1984) Shock temperatures in CaO. J Geophys Res 89:7845–7851Google Scholar
  13. Bosman AJ, Crevecour C (1968) Relaxation losses in CoO doped with Li or Na. J Phys Chem Solids 29:102–113Google Scholar
  14. Broadhurst MG, Bur AJ (1965) Two terminal dielectric measurements up to 6 × 108 Hz. J Res NBS 69 C:165–172Google Scholar
  15. Bussey HE (1967) Measurement of RF properties of materials — a survey. Proc IEEE 55:1046–1053Google Scholar
  16. Bussey HE (1987) Complex permittivity of fused silica. Letter to R.D. Shannon, December 2, 1987Google Scholar
  17. Bussey HE, Gray JE, Bamberger EC, Rushton E, Russell G, Petley BW, Morris D (1964) International comparison of dielectric measurements. IEEE Trans. Instrum Measur IM-13:305–311Google Scholar
  18. Butler CT, Sturm BJ, Quincy RB (1971) Arc fusion growth and Characterization of high purity MgO crystals. J Cryst Growth 8:197–204CrossRefGoogle Scholar
  19. Donnay JDH, Ondik HM (1973) Crystal Data-Determinative Tables. Vol. II, Inorganic Compounds. US Dept. of Commerce, National Bureau of Standards, JCPDSGoogle Scholar
  20. Field RF (1954) Errors occurring in the measurement of dielectric constant. Proc ASTEA Am Soc Testing Mats 54:456–478Google Scholar
  21. Fontanella J (1987) Unpublished dataGoogle Scholar
  22. Fontanella J, Andeen C, Schuele D (1974) Low-frequency dielectric constants of alpha-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854CrossRefGoogle Scholar
  23. Freund F (1987) Hydrogen and carbon in solid solution in oxides and silicates. Phys Chem Minerals 15:1–18CrossRefGoogle Scholar
  24. Freund F, Wengeler H (1982) The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals. J Phys Chem Solids 43:129–145Google Scholar
  25. Harris WP, Scott AN (1962) Precise measurement of dielectric constant by the two-fluid method. 1962 Annual Rept., Conference on Electrical Insulation, NRC Publ. 1080, Natl. Academy of Sciences, Washington, D.C., October, pp 51–53Google Scholar
  26. Hartshorn L, Ward WH (1936) The measurement of the permittivity and power factor of dielectrics at frequencies from 104 to 108 cycles per second. Proc DIEEA Inst of Electrical Eng (London) 79:597–609Google Scholar
  27. Hewlett-Packard (1984) Operating Manual 4275A Multi-Frequency LCR Meter, Yokogawa-Hewlett-Packard Ltd., TokyoGoogle Scholar
  28. Jacobson JL, Nixon ER (1968) Infrared dielectric response and lattice vibrations of calcium and strontium oxides. J Phys Chem Solids 29:967–976Google Scholar
  29. Jeanloz R, Ahrens TJ (1980) Equations of state of FeO and CaO. Geophys J R Astr Soc 62:505–528Google Scholar
  30. Kotz J, Freund F, Klatt E (1983) Dielectric behavior or arc-fused MgO. High Temp High Press 15:355–356Google Scholar
  31. Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334Google Scholar
  32. Loh E (1968) Optical phonons in BeO crystals. Phys Rev 166:673–678CrossRefGoogle Scholar
  33. Lowndes RP, Martin DH (1969) Dielectric dispersion and structures of ionic lattices. Proc R Soc London A308:473–496Google Scholar
  34. Narayana Rao, DAAS (1947) Dielectric constants of crystals, I. Different types of quartz. Proc Ind Acad Sci 25 A:408–412Google Scholar
  35. Narayano Rao, DAAS (1949) Dielectric constants of crystals III. Proc Acad Sci 30A:82–86Google Scholar
  36. Neeley VI, Kemp JC (1963) Optical absorption in CaO single crystals. J Phys Chem Solids 24:1301–1304Google Scholar
  37. Roberts R (1950) A theory of dielectric polarization in alkali halid crystals. Phys Rev 77:258–263Google Scholar
  38. Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phys Rev 81:865–868Google Scholar
  39. Schmidt W (1902) Bestimmung der Dielektricitatskonstanten von Krystallen mit elektrischen Wellen. Ann Phys 9:919–937Google Scholar
  40. Scott AH, Curtis HL (1939) Edge correction in the determination of dielectric constant. J Res Natl Bur Stds 22:747–775Google Scholar
  41. Scott AH, Harris WP (1961) Residual losses in a guard-ring micrometer-electrode holder for solid-disk dielectric specimens. J Res Natl Bur Stds 65C: 101–112Google Scholar
  42. Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite, and forsterite and the oxide additivity rule. Phys Chem Minerals 16:745–749Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. A. Subramanian
    • 1
  • R. D. Shannon
    • 1
  • B. H. T. Chai
    • 2
  • M. M. Abraham
    • 1
  • M. C. Wintersgill
    • 3
  1. 1.Central Research and Development DepartmentE.I. du Pont de Nemours & Co., Inc.WilmingtonUSA
  2. 2.Allied Corporation, Corporate HeadquartersMorristownUSA
  3. 3.United States Naval AcademyAnnapolisUSA

Personalised recommendations