Journal of Comparative Physiology A

, Volume 173, Issue 1, pp 103–113 | Cite as

Dead reckoning in a small mammal: the evaluation of distance

  • V. Séguinot
  • R. Maurer
  • A. S. Etienne


When hoarding food under infra-red light, golden hamsters Mesocricetus auratus W. return fairly directly from a feeding place to their nest site by evaluating and updating internal signals that they have generated during the previous outward journey to the feeding place. To test more specifically the animals' capacity to evaluate the linear components of the outward journey, the subjects were led from their (cone-shaped) nest to a feeding place along a detour which comprised either 2 (experiment 1) or 5 (experiment 2) segments; adjoining segments were at right angles to each other. In these conditions, the subjects remained significantly oriented towards the nest and therefore were capable of assessing translations as well as rotations during the outward journey. In experiment 3, the nest was removed after the hamsters had started the direct outward journey to the feeding place and the hamsters were rotated during the food uptake. The animals were no longer oriented towards the starting point of their journey, but nonetheless covered, along a fairly straight path, the correct homing distance, and then changed over to a circular search path. These results confirm that mammals can derive the linear components of an outward journey from self-generated signals and therefore are able to judge the homing distance without relying on cues from the environment. For a number of detour outward journeys, our data yield an unexpectedly good fit to Müller and Wehner's (1988) model of dead reckoning in ants. However, this is no longer the case when the outward journey contains an initial loop which brings the subject back to the starting point. These findings are discussed in terms of the biological significance and limitations of an approximate form of path integration.

Key words

Homing Dead reckoning Distance estimation Hoarding Golden hamster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  2. Benhamou S, Sauvé JP, Bovet P (1990) Spatial memory in large scale movements: efficiency and limitation of the egocentric coding process. J Theor Biol 145:1–12Google Scholar
  3. Berthoz A, Israël I, Vitte E, Zee D (1988) Linear displacement can be derived from otolithic information and stored on spatial maps controlling the saccadic system. Adv Oto-Rhino-Laryngol 41:76–81Google Scholar
  4. Bisetzky AR (1957) Die Tänze der Bienen nach einem Fussweg zum Futterplatz. Z Vergl Physiol 40:264–288Google Scholar
  5. Blest AD (1960) The evolution, ontogeny and quantitative control of the settling movements of some New World Saturniid moths, with some comments on distance communication by honey bees. Behaviour 16:188–253Google Scholar
  6. Bovet J (1984) Strategies of homing behavior in the red squirrel, Tamiasciurus hudsonicus. Behav Ecol Sociobiol 16:81–88Google Scholar
  7. Dornfeldt K (1975) Eine Elementaranalyse des Wirkungsgefüges des Heimfindevermögens der Trichterspinne Agelena labyrinthica (Cl.). Z Tierpsychol 38:267–293Google Scholar
  8. Duelli P (1976) Distanzdressuren von getragenen Ameisen, Cataglyphis bicolor Fabr. (Hymenoptera: Formicidae). Rev Suisse Zool 83:413–418Google Scholar
  9. Etienne AS (1978) Energy versus time dependent parameters in the determination of a behavioural sequence in the Aeschna larva. J Comp Physiol 127:89–96Google Scholar
  10. Etienne AS (1980) The orientation of the golden hamster to its nest-site after the elimination of various sensory cues. Experientia 36:1048–1050PubMedGoogle Scholar
  11. Etienne AS, Maurer R, Portenier V, Saucy F, Teroni E (1986a) Short-distance homing of the golden hamster under conditions of darkness and light. In: Beugnon G (ed) Orientation in space. Privat, IEC, ToulouseGoogle Scholar
  12. Etienne AS, Maurer R, Saucy F, Teroni E (1986b) Short-distance homing in the golden hamster after a passive outward journey. Anim Behav 34:696–715PubMedGoogle Scholar
  13. Etienne AS, Maurer R, Saucy F (1988) Limitations in the assessment of path dependent information. Behaviour 106 1/2:81–111Google Scholar
  14. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Gallistel CR (1980) The organization of action: A new synthesis. Erlbaum, Hillsdale NJGoogle Scholar
  16. Gallistel CR (1990) The organization of learning. MIT Press, Cambridge LondonGoogle Scholar
  17. Görner P, Claas B (1985) Homing behavior and orientation in the funnel-web spider, Agelena labyrinthica Clerck. In: Barth F (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Hill DE (1979) Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey. Behav Ecol Sociobiol 5:301–322Google Scholar
  19. Hoffmann G (1984a) Homing by systematic search. In: Varjú D, Schnitzler HU (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Hoffmann G (1984b) Orientation behaviour of the desert woodlouse Hemilepistus reaumuri: adaptation to ecological and physiological problems. Symp Zool Soc Lond 53:405–422Google Scholar
  21. Israël I, Berthoz A (1989) Contribution of the otoliths to the calculation of linear displacement. J Neurophysiol 62:247–263Google Scholar
  22. Maurer R (1993) L'intégration du chemin ou navigation à l'estime chez les êtres vivants: formalisation de modèles neuromimétiques. Unpubl Doct Disser, University of Geneva, SwitzerlandGoogle Scholar
  23. Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Handbook of sensory physiology Vol. VI/II. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Miller S, Potegal M, Abraham L (1983) Vestibular involvement in a passive transport and return task. Physiol Psychol 11:1–10Google Scholar
  25. Mittelstaedt H (1978) Kybernetische Analyse von Orientierungsleistungen. In: Kybernetik 1977. Oldenbeurg, München WienGoogle Scholar
  26. Mittelstaedt H, Mittelstaedt ML (1982) Homing by path integration. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin HeidelbergGoogle Scholar
  27. Mittelstaedt ML, Glasauer S (1991) Idiothetic navigation in gerbils and humans. Zool Jb Physiol 95:427–435Google Scholar
  28. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290Google Scholar
  29. O'Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  30. Potegal M (1982) Vestibular and neostriatal contributions to spatial orientation. In: Potegal M (ed) Spatial abilities. (Development and physiological foundations). Academic Press, New York, pp 361–387Google Scholar
  31. Saint Paul U von (1982) Do geese use path integration for walking home? In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg, pp 299–307Google Scholar
  32. Sauvé JP (1989) L'orientation spatiale: formalisation d'un modèle de mémorisation égocentré et expérimentation chez l'homme. Unpubl Doct Dissert, University of Aix-Marseille IIGoogle Scholar
  33. Seyfarth E-A, Hergenröder R Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148Google Scholar
  34. Teroni E, Portenier V, Etienne AS (1987) Spatial orientation of the golden hamster in conditions of conflicting location-based and route-based information. Behav Ecol Sociobiol 20:389–397Google Scholar
  35. Teroni E, Portenier V, Etienne AS (1990) Utilisation par le hamster doré d'indices visuels dans un environnement visuellement symétrique. Biology of Behaviour 15:74–92Google Scholar
  36. Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsblatt der Naturforschenden Gesellschaft Zürich 184:1–132Google Scholar
  37. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:315–338Google Scholar
  38. Wehner R, Wehner S (1986) Path integration in desert ants: Approaching a long-standing puzzle in insect navigation. Monit Zool Ital 20:309–331Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • V. Séguinot
    • 1
  • R. Maurer
    • 1
  • A. S. Etienne
    • 1
  1. 1.Laboratoire d'EthologieUniversity of GenevaCarouge (Geneva)Switzerland

Personalised recommendations