Climate Dynamics

, Volume 4, Issue 3, pp 145–156 | Cite as

Internal secular variability in an ocean general circulation model

  • Uwe Mikolajewicz
  • Ernst Maier-Reimer


We describe results of an experiment in which the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was driven by a spatially correlated white-noise freshwater flux superimposed on the climatological fluxes. In addition to the red-noise character of the oceanic response, the model exhibits pronounced variability in a frequency band around 320 years. The centers of action of this oscillation are the Southern Ocean and the Atlantic.


Frequency Band Circulation Model General Circulation General Circulation Model Southern Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgartner A, Reichel E (1975) Die Weltwasserbilanz. Oldenbourg, MunichGoogle Scholar
  2. Berger WH, Vincent E (1986) Sporadic shutdown of North Atlantic deep water production during the Glacial-Holocene transition? Nature 324:53–55Google Scholar
  3. Broecker WS, Peteet D, Rind D (1985) Does the ocean atmosphere system have more than one stable mode of operation? Nature 315:21–26Google Scholar
  4. Broecker WS, Andree M, Wolfli W, Oeschger H, Bonani G, Kennett J, Peteet D (1988) The chronology of the last deglaciation: implications to the cause of the Younger Dryas event. Paleoceanography 3:1–19Google Scholar
  5. Bryan F (1986) High latitude salinity effects and interhemisphere thermohaline circulations. Nature 305:301–304Google Scholar
  6. Cox M (1975) A baroclinic numerical model of world ocean. In: Numerical models of ocean circulation. National Academy of Sciences, Washington, pp 107–120Google Scholar
  7. Dickson RR, Meincke J, Malmberg S-A, Lee AJ (1988) The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151Google Scholar
  8. Fisher DA (1982) Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada. Climatic Change 4:419–426Google Scholar
  9. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305Google Scholar
  10. Gates WL (1985) Modelling as a means of studying the climate system. In: MacCracken MC, Luther FM (eds) Projecting the climatic effects of increasing carbon dioxide. Department of Energy/ER-0237, pp 57–79, Washington DCGoogle Scholar
  11. Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91:5037–5046Google Scholar
  12. Hasselmann K (1976) Stochastic climate models. Part I. Theory. Tellus 28:473–485Google Scholar
  13. Hasselmann K (1979) On the signal-to-noise problem in atmospheric response studies. Meteorology of tropical oceans. Royal Meteorological Society, Blacknell, pp 251–259Google Scholar
  14. Hasselmann K (1982) An ocean model for climate variability studies. Progr Oceanogr 11:69–92Google Scholar
  15. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13:1093–1104Google Scholar
  16. Herterich K, Hasselmann K (1987) Extraction of mixed layer advection velocities, diffusion coefficients, feedback factors and atmospheric forcing parameters from the statistical analysis of North Pacific SST anomaly fields. J Phys Oceanogr 17:2145–2156Google Scholar
  17. Humbold A von (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cotta'scher, Stuttgart TübingenGoogle Scholar
  18. Lamb HH (1977) Climate: present past and future, vol 2. Methuen, LondonGoogle Scholar
  19. Lemke P (1977) Stochastic climate models. Part 3. Application to zonally averaged energy models. Tellus 29:385–392Google Scholar
  20. Lemke P, Trinkl EW, Hasselmann K (1980) Stochastic dynamic analysis of polar sea ice variability. J Phys Oceanogr 10:2100–2120Google Scholar
  21. Levitus S (1982) Climatological atlas of the world ocean. NOAH Professional Paper 13, Rockville, Md.Google Scholar
  22. Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Climate Dynamics 2:63–90Google Scholar
  23. Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. In: Ayala-Castanares A, Wooster W, Yanez-Arancibia A (eds) Oceanography 1988. UNAM Press, Mexico, pp 87–100Google Scholar
  24. Maier-Reimer E, Mikolajewicz U, Crowley T (1990) Ocean GCM sensitivity experiment with an open Central American isthmus. Paleoceanography 5:349–366Google Scholar
  25. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Climate 1:841–866Google Scholar
  26. Marotzke J, Welander P, Willebrand J (1988) Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus 40A:162–172Google Scholar
  27. Mikolajewicz U, Santer B, Maier-Reimer E (1990) Ocean response to greenhouse warming. Nature 345:589–593Google Scholar
  28. Müller P, Willebrand J (1985) Compressibility effects in the thermohaline circulation: a manifestation of the temperature-salinity mode. Deep Sea Res 33:559–571Google Scholar
  29. Reynolds RW (1979) A stochastic forcing model of sea surface temperature anomalies in the North Pacific and North Atlantic. Climatic Res Inst, Rep no 8, Oregon State University, CorvallisGoogle Scholar
  30. Robin G de Q (1980) Climate into ice: the isotopic record in polar ice sheets. In: Allison I (ed) Sea level, ice and climatic change. IAHS Publ 131:207–216Google Scholar
  31. Roemmich D, Wunsch C (1985) Two transatlantic sections: meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep Sea Res 32:619–664Google Scholar
  32. Rooth C (1982) Hydrology and ocean circulation. Progr Oceanogr 11:131–149Google Scholar
  33. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230Google Scholar
  34. Welander P (1986) Thermohaline effects in the ocean circulation and related simple models. In: Willebrand J, Anderson DLT (eds) Large-scale transport processes in oceans and atmosphere. Reidel, Dordrecht, pp 163–200Google Scholar
  35. Whitworth T, Peterson RG (1985) Volume transport of the Antarctic circumpolar current from bottom pressure measurements. J Phys Oceanogr 15:810–816CrossRefGoogle Scholar
  36. Wigley T, Raper S (1990) Natural variability of the climate system and detection of the greenhouse effect. In: Schlesinger ME (ed) Proceedings of DOE Workshop on Greenhouse-Gas-Induced Climatic Change. Department of Energy, Washington DC (in press)Google Scholar
  37. Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A comprehensive ocean-atmosphere data set. Bull Am Soc 68:1239–1250Google Scholar
  38. Wüst G (1933) Schichtung und Zirkulation des Atlantischen Ozeans. Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. In: Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–27, vol 6, pt 1Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Uwe Mikolajewicz
    • 1
  • Ernst Maier-Reimer
    • 1
  1. 1.Max-Planck-Institut für MeteorologieHamburg 13Federal Republic of Germany

Personalised recommendations