Advertisement

Human Genetics

, Volume 95, Issue 6, pp 641–644 | Cite as

Apoptosis regulatory gene NEDD2 maps to human chromosome segment 7q34–35, a region frequently affected in haematological neoplasms

  • Sharad Kumar
  • Deborah L. White
  • Setsuo Takai
  • Suzanne Turczynowicz
  • Christopher A. Juttner
  • Timothy P. Hughes
Original Investigation

Abstract

Developmentally regulated mouse gene Nedd2 encodes a protein similar to the product of the nematode Caenorhabditis elegans cell death gene ced-3 and the mammalian interleukin-1β-converting enzyme. Overexpression of Nedd2 in cultured mammalian cells induces apoptosis that can be blocked by proto-oncogene BCL2. We have isolated cDNA clones for the human homologue of the mouse gene and, by using these as probes, mapped the human NEDD2 gene to 7q34-35 by fluorescence in situ hybridisation. The potential tumour suppressor function of NEDD2 is discussed.

Keywords

Caenorhabditis Elegans Chromosome Segment Mouse Gene Suppressor Function Tumour Suppressor Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heim S (1992) Cytogenetic findings in primary and secondary MDS. Leuk Res 16:43–46Google Scholar
  2. Isobe M, Erikson J, Emanuel BS, Nowell PC, Croce CM (1985) Location of gene for β subunit of human T-cell receptor at band 7q35, a region prone to rearrangements in T cells. Science 228:580–582Google Scholar
  3. Johansson B, Mertens F, Mitelman F (1993) Cytogenetic deletion maps of haematologic neoplasms: circumstantial evidence for tumor suppressor loci. Genes Chromosom Cancer 8:205–218Google Scholar
  4. Kere J, Ruutu T, Davies KE, Roninson IB, Watkins PC, Winqvist R, Chapelle A de la (1989) Chromosome 7 long arm deletions in myeloid disorders: a narrow breakpoint region in 7q22 defined by molecular mapping. Blood 73:230–234Google Scholar
  5. Korsmeyer SJ (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886Google Scholar
  6. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev 8:1613–1626Google Scholar
  7. Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161Google Scholar
  8. Lawrence JB, Villnave CA, Singer RH (1988) Sensitive, high resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma cell line. Cell 52:51–61Google Scholar
  9. Le Beau MM, Diaz MO, Rowley JD, Mak TW (1985) Chromosomal localization of the human T cell receptor β-chain genes. Cell 41:335Google Scholar
  10. Lichter P, Tang CC, Call K, Hermanson G, Evans G, Housman D, Ward DC (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69Google Scholar
  11. Mitelman F, Kaneko Y, Trent J (1991) Report of the committee on chromosome changes in neoplasia. Cytogenet Cell Genet 58:1053–1079Google Scholar
  12. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660Google Scholar
  13. Morton CC, Duby AD, Eddy RL, Shows TB, Seidman JG (1985) Genes for β chain of T-cell antigen receptor map to region of chromosome rearrangement in T cells. Science 228:582–584Google Scholar
  14. Neuman WL, Rubin CM, Rios RB, Larson RA, Le Beau MM, Rowley JD, Vardiman JW, Schwartz IL, Faber RA (1992) Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood 79:1501–1510Google Scholar
  15. Pinkel D, Strauma T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938Google Scholar
  16. Rabbitts TH, Boehm T (1991) Structural and functional chimerism results from chromosomal translocation in lymphoid tumors. Adv Immunol 50:119–146Google Scholar
  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Latoratory, Cold Spring Harbor, NYGoogle Scholar
  18. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J (1992) Induction of apoptosis by wild-type p53 in a human colon tumorderived cell line. Proc Natl Acad Sci USA 89:4495–4499Google Scholar
  19. Takahashi E, Hori T, O'Connell P, Leppert M, White R (1990) Rbanding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum Genet 86:14–16Google Scholar
  20. Takahashi E, Hori T, O'Connell P, Leppert M, White R (1991) Mapping of the MYC gene to band 8q24. 12-q24.13 by R-banding and distal to fra(8)(q24.11), FRA8E, by fluorescence in situ hybridization. Cytogenet Cell Genet 57:109–111Google Scholar
  21. Takai S, Nishino N, Kitayama H, Ikawa Y, Noda M (1993) Mapping of the KREV1 transformation suppressor gene and its pseudogene (KREV1P) to human chromosome 1q13.3 and 14q24. 3, respectively, by fluorescence in situ hybridization. Cytogenet Cell Genet 63:59–61Google Scholar
  22. Takai S, Kasama K, Yamada K, Kai N, Hirayama N, Namiki H, Taniyama T (1994) Human high-affinity FcgRI (CD64) gene mapped to chromosome 1q21.1-q21.3 by fluorescence in situ hybridization. Hum Genet 93:13–15Google Scholar
  23. Takai S, Yoshida Y, Noda M, Yamada K, Kumar S (1995) Assignment of the developmentally regulated gene NEDD1 to human chromosome 12q22 by fluorescence in situ hybridization. Hum Genet 95:96–98Google Scholar
  24. Viegas-Pequignot E, Dutrillaux B (1978) Une methode simple pour obtenir des prophases et des prometaphases. Ann Genet (Paris) 21:122–125Google Scholar
  25. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78:739–750Google Scholar
  26. Webber LM, Garson OM (1983) Fluorodeoxyuridine synchronization of bone marrow cultures. Cancer Genet Cytogenet 8:123–132Google Scholar
  27. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemia cells that is inhibited by interleukin-6. Nature 352:345–347Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Sharad Kumar
    • 1
  • Deborah L. White
    • 1
  • Setsuo Takai
    • 2
  • Suzanne Turczynowicz
    • 1
  • Christopher A. Juttner
    • 1
  • Timothy P. Hughes
    • 1
  1. 1.Hanson Centre for Cancer Research, Institute of Medical and Veterinary ScienceAdelaideAustralia
  2. 2.Department of Genetics, Research InstituteInternational Medical Center of JapanTokyoJapan

Personalised recommendations